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ABSTRACT 
In this paper a numerical investigation of the unsteady three-dimensional flow through the 
transonic test turbine stage at Graz University of Technology is presented. The numerical 
code applied solves the Reynolds-averaged Navier-Stokes equations using a time-iterative 
characteristic method derived by the finite-volume approach. Turbulence is modeled by the 
one-equation model of Spalart and Allmaras. A periodic solution is obtained by applying 
phase lagged boundary conditions. Wall boundary layer is simulated by pressure gradient 
sensitive wall functions. The effects of the tip leakage flow are considered by meshing the tip 
clearance between rotor blade and casing. 
The results are discussed and compared with experimental data gained by time-resolved laser 
doppler velocimetry (LDV). Both calculation and measurements detect in good agreement the 
wake shedding from the trailing edges of stator and rotor blades to be phase locked to the 
blade passing frequency. The calculation shows, that strong shock waves periodically reflected 
by casing and blades are responsible for this phenomenon. 
 
NOMENCLATURE 
s       entropy 
wr      velocity vector 
p       pressure 
c       speed of sound 
ρ       density 
κ       ratio of specific heats 
S       cell-face area 
∇        Nabla-operator 
       heat flux vector q
r

τ        shear tensor 
ξ,η,s   curvilinear coordinate directions 
i          grid index 
V       cell volume 
      unit vector normal to cell face n
      unit vector of curvilinear coordinate  e
          directions 
 unit vectors in cell face, normal to  e
            each other, 

21 vv

∆            difference operator 

λ          eigenvalue 
C     characteristic value 
ω       under relaxation parameter for  
     Newton-Raphson Iteration 
I        unit matrix 
κw,B w  constants for the wall-functions  
            defined by Spalding (1961) 
u+         nondimensional parallel-to-wall 
         velocity &
y+      nondimensional wall distance 
k         coefficient of thermal conductivity 
R         gas constant 
νl, νt   laminar and turbulent kinematic  

r           viscosity 
r T         rotor blade passing period 

 
,err Superscript 

T operator  to transpose  
matrix
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INTRODUCTION 
The design of efficient turbomachinery stages requires detailed knowledge of flow phenomena 

and their impact on efficiency. Nowadays turbine stages often feature three-dimensional 
geometrical design and high pressure ratio. So the flow is transonic and pressure shocks affect the 
resulting complex unsteady flow situation. Steady state CFD flow calculations capture the time 
averaged main flow well but lacks by definition in the predictions of unsteady effects.  

The numerical calculation of the three-dimensional unsteady flow through a turbine stage holds a 
lot of challenges. To capture the unsteady effects the grid resolution must be fine in the whole flow 
domain. Boundary layer effects determine the secondary flow and the losses, so the wall boundary 
layer must be simulated properly. Resolving the boundary layer by a fine grid leads to small cells, 
which force the computational time-step value to be very small. To achieve a periodic solution a lot 
of blade passing periods has to be calculated. If the pitch ratio of stator and rotor is not unity, 
additional effort must be applied to reduce the calculation domain to one stator and rotor channel. 
To get appropriate results for such a problem in reasonable total computational time, a CFD solver 
must feature a fast algorithm, that is able to accurately solve the Navier-Stokes equations, wall-
functions, that properly simulates the boundary layer to reduce total count of cells and to enable a 
larger time-step value, and a correct method to reduce the flow problem to one channel for stator 
and rotor. 

The used Navier-Stokes code solves the Reynolds-averaged Navier-Stokes equation in 
characteristic formulation together with the one equation turbulence closure developed by Spalart 
and Allmaras (1994). The code requires structured grids in a multi-block arrangement. The 
boundary conditions are applied with phantom cells. To gain a stable and accurate procedure the 
code uses a decomposition of the inviscid fluxes, that are derived by the conservative formulation 
of the Navier-Stokes equation, leading to a set of wave-type equations (one dimensional convection 
equation). Using this characteristic form of the flow equations the computational efforts caused by 
multiple matrix manipulations of conservative flow solvers can be avoided, thus leading to 
reduction in computer time. The resulting scheme is not conservative for mass, momentum end 
energy, but the failure is negligible. Discretisation in time is done by a second-order approximation 
of the time evolution, which is solved in an implicit way. To cope with unequal pitch ratio, phase 
lagged boundary conditions (e.g. Erdos et al., 1977 and He, 1992) are applied. To further reduce 
calculation effort and time, pressure-gradient-sensitive wall functions were applied. Wall-functions 
derived by the law-of-the-wall formulation (Spalding 1961) have been suggested by Frink (1996), 
within this paper a new approach will be presented.  

The used CFD-code was developed at the Institut for Thermal Tubomachinery in Graz by 
enhancements on the method sketched by Pieringer et al. (2001), so the major focus will be laid on 
the description of the numerical scheme. 

The transonic test turbine stage at Graz University of Technology was chosen for the 
investigation, since a lot of experimental and numerical research has already been conducted for 
that test case (e.g. Göttlich et al. 2004, Pieringer et al. 2003). Experimental and numerical results 
will be compared, and the mechanism of phase-locked wake-shedding behind the stator trailing 
edge will be analyzed. 
 
NUMERICAL METHOD 

Discretisation in space 
When using primitive variables including the entropy s, the Navier-Stokes equations can be 

written as follows. 
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The result of the inviscid part (Euler part) of the Navier-Stokes equations  
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can also be obtained by the solution of a set of one-dimensional characteristic equations. For a 
curvilinear coordinate system the characteristic equations in one index direction adopt the form 
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In fact the discrete equations in one index direction can be written as follows 
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So, the characteristic differences and the corresponding eigenvalues are 
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and the derivatives in time of the primitive variables can now be constructed. 
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To evaluate the spatial differences of the characteristics depending on the sign of the 
corresponding eigenvalue (upwind-discretising), a method derived from the TVD (total variation 
diminishing) procedure of Chakravarthy (1988) is applied, which leads to following description. 
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Depending on the sign of the corresponding eigenvalue λ, the spatial differences ∆CI, ∆CII  and 
∆CIII and the two values sign12 and sign23, depending on the sign of the spatial differences must be 
set. 
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When choosing Φ = 1/3, this algorithm leads to a stable approximation of spatial third order 
accuracy.  

The viscous terms were constructed in a central-differencing manner, and superposed to the 
Euler results. 

Discretisation in time 
The parabolical approximation of the time-derivatives leads to the implicit condition 
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which is solved using the Newton-Raphson method,  
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driving qn for n→∞ to the value qt+1. Instead of starting the Newton-Raphson iteration with qn=qt 

for n=0, the starting values were determined by an approximation on an coarser grid. After 
transposing the flow problem to a coarser grid (qt→Qt), it is solved first order accurate in time and 
space (Qt+1), and the results were used for the initialization on the fine grid, qn=qt + Qt+1 - Qt for 
n=0. The propagation of low frequency disturbance, that can be predicted very well by a coarser 
grid, is well captured by this method, and a reduced count of Newton-Raphson steps on the fine 
grid is sufficient for convergence. 
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Phase-lagged boundary conditions 
To gain periodic solutions in time and space for arbitrary stator and rotor blade numbers, phase 

lagged boundary conditions at geometrical periodic boundaries and at the interface between stator 
and rotor domain were applied. A direct-store technique is used, the updates on the boundaries is 
done by a weighted average of the newly available flow-field and the stored variables. To keep the 
demand of computer memory low, not each but a sufficient amount of time-step values is stored and 
a linear interpolation is used for the reconstruction of the boundary values.  

Pressure-gradient-sensitive wall function 
The applied wall-function is based on the law-of-the-wall formulation by Spalding (1961) and 

considers the shear-stress distribution perpendicular to the wall surface, which is mainly determined 
by pressure gradients (Pieringer, 2005). This wall function assumes steady state conditions. 

The law-of-the-wall formulation by Spalding (which was slightly modified for this wall-function 
approach) describes the non-dimensional parallel to the wall velocity distribution of a turbulent 
boundary layer for zero pressure gradient flows. (The direction of y is normal to the wall.) 
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The assumption, that within the boundary layer the shear stress is constant, leads to an equation for 
the ratio of turbulent and laminar kinematic viscosity.  
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By knowing the parallel to the wall velocity at a point with a defined distance to the wall and 
estimating the laminar viscosity and the density at the wall, one can figure out the distribution of the 
parallel velocity and the ratio of turbulent and laminar kinematic viscosity between that point and 
the wall. By using phantom cells to impose the boundary condition, an easy way is to take all 
known values of the first calculation cell close to the wall and to calculate the values of the 
phantom cells, having a defined distance to the wall. So there is a clearance between the first 
calculation cell and the wall.  

When pressure gradients occur, the assumption, that within the boundary layer the shear stress is 
constant, is not valid anymore. Close to a wall the shear stress will rather be a function of skin-
friction, distance to wall and pressure gradients parallel to the wall. In fact the equilibrium of forces 
predicts 
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u
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∂+ )0()()( ττννρ  ( 13) 

By scaling the spatial distribution of the ratio of laminar and turbulent viscosity, that can be 
derived by Eq. (12) and Eq. (11), to hit the local available value at the position of the first 
calculation cell, Eq. (13) defines the spatial derivative of the velocity u. Since u is zero at the wall 
and has to adopt the known value at the first calculation cell the velocity profile and the skin-
friction can be calculated. Now the velocity profile is used to define the velocity in the phantom cell 
and the scaled distribution of the ratio of laminar and turbulent viscosity is used to define the 
Spalart Allmaras turbulence variable there (for detailed description see Pieringer, 2005).  

For three-dimensional problems, the pressure gradients in two perpendicular directions parallel 
two the wall are needed in order to properly define the boundary layer. In the phantom cell the 
velocity perpendicular to the wall surface is set to zero and the pressure is extrapolated from the 
calculation domain. 

When postulating adiabatic wall condition, the equilibrium of heat flow and work by shear 
forces, 

 5



0)( =
∂
∂++

∂
∂

y
uu

y
Tk tl ννρ  ( 14) 

derived by the fact, that energy-flux towards the wall must be equal zero, holds at the wall and also 
within the boundary layer. Therefore Eq. (14) is used to calculate the temperature of the phantom 
cell.  

Since this boundary layer approximation is derived from steady-state conditions, some additional 
error will occur by applying it to time-resolved calculations. 
 
VALIDATION 

To validate the presented numerical scheme the blade VKI LS 59 was chosen for comparison to 
the TTM solver, a flow-solver that is based on conventional and well established schemes. 

The TTM solver solves the Reynolds-averaged Navier-Stokes equations by means of a fully-
implicit time-marching finite-volume method and is described in detail by Gehrer (1999). The 
governing equations are treated in conservative form, the convective parts are discretized using a 
third-order-accurate TVD-upwind scheme, based on the MUSCL type of an upwind scheme. 

The VKI LS 59 is modeled 3D with span 0.1m. The mesh for the TTM solver is designed for 
resolving the boundary layer at the wall, leading to a cell count of about 400.000. For the presented 
numerical scheme the mesh is designed for simulating the boundary layer at the wall using the 
presented wall function, leading to a cell count of about 240.000. Besides from boundary layer area 
both grids do not differ from the other.  

At the inlet total pressure pt = 1.413 bar and total temperature Tt = 308.0 K and at the outlet 
isentropic Mach number Mis = 0.7 are applied, turbulence is modeled by Spalart Allmaras 
turbulence closure. 

  
    (a) TTM solver (b) presented solver 

Fig. 1: VKI LS 59, grayscale indicates Mach number, lines indicate total pressure 

 
Results at mid-span and outlet (Fig.1) show, that there is excellent agreement in Mach number 

(Fig. 1, grayscale) and well agreement in total pressure (Fig. 1, lines). There are only minor 
deviations in total pressure close to the casing (Fig.1, arrows).  

Apart from time-saving due to the reduced amount of necessary computational grid-cells, the 
presented solver needed half the time for discretising the Euler-parts of the Navier-Stokes equations 
at each cell compared to the TTM solver, this further reduced computational time. 
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TEST CASE 
The transonic test turbine stage at Graz University of Technology is a cold flow test turbine 

facility (Erhard and Gehrer, 2000), which is a unique combination of a max. 2.8 MW axial test 
turbine and a directly coupled compressor that generates more than half of the compressed air 
needed to drive the turbine. To cover the losses additional air is provided by a separate, electrically 
driven compressor station. The turbine casing allows access for conventional as well as optical 
measurement devices. 

The test turbine stage contains 24 stator blades and 36 rotor blades, which leads to a pitch ratio 
of 2/3. Whereas the inner diameter of the stage is constant (D = 0.4 m) the outer casing shows a 
converging-diverging contour. The minimum of the flow channel height is at the aft section of the 
stator (Dmin = 0.503 m), then the outer contour is a cone with an opening angle of 12° (Doutlet = 
0.553 m). The design exit angle of the stator is 69.7° from the axis. The gap between the rotor 
blades and the casing is 0.95 mm, which is 1.56% of the blade height at the leading edge and 1.36% 
of the blade height at the trailing edge. 
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r[m]
inlet outlet

plane B1

interface

rotor bladestator blade
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hub
plane C1

tip clearance

fillets
fillet

 

 
Fig. 2: Transonic test turbine stage at Graz University of Technology, geometry overview 

Computational Grid 
A multi-block grid consisting of 10 blocks and a total count of about 1.000.000 cells is used for 

the numerical calculation.  
 

blade 

casing 

  

 

fillet 

thin block 

  
Fig. 3: Grid details, left: tip-clearance of the rotor-blade, right: meshing of the fillets 

 
The tip clearance between rotor blade and outer casing is meshed by (only) 16 cells, though the 

use of wall-functions stills allows a good spatial resolution there (Fig. 3, left). The fillets at the 
stator hub and tip and at the rotor hub are modeled as well. To prevent singularities there, a thin 
block covers the wall domain at the blades (Fig. 3, right). The channel is meshed by 72 cells from 
hub to outer casing. 
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Boundary Conditions 

Inlet Boundary Conditions:  
total pressure: 3.4202 bar 
total temperature: 403.0˚ K  
inlet angle: 0˚  (peripheral)  
Spalart-Allmaras turbulence variable:    /νl = 0.1  ~ν

The Spalart-Allmaras turbulence model was designed for fully turbulent flow with low free-
stream turbulence. As the turbulence intensity at the inlet was not known, the value for    /νl was set 
to 0.1, which is a suggested value by Spalart and Allmaras (1994) for low free-stream turbulence. 

~ν

Outlet Boundary Conditions:  
static pressure: 0.935 bar 
 
number of revs: 10545.5 rpm.  

Calculation Parameters 
A steady-state solution was achieved by using a mixing plane technique between stator and rotor. 

Two-dimensional non-reflecting boundary conditions using the circumferentially averaged static 
pressure at the rotor inlet were applied at the stator outlet. The flow angle, the total pressure and the 
total temperature extracted form the circumferentially averaged values at the outlet of the stator grid 
determined the inlet of the rotor grid. 

Starting from the steady state result 30.000 time steps with a value ∆t = 1.7561e-7 sec were 
calculated to obtain a periodic unsteady solution. The maximum CFL number was about 7. One 
stator period lasts 900 time steps and one rotor period lasts 1350 time steps, so more than 33 stator 
periods and 22 rotor periods were computed. The approximation on the coarser grid (every second 
grid-point) for each time step was calculated first-order accurate in time and space. Afterwards on 
the fine grid each time step was solved by 6 Newton-Raphson steps with an under-relaxation value 
of ω_=_0.6. On the fine grid the nondimensional wall distance y+ was below 80 at each cell close to 
a wall. For the phase-lagged boundary condition every 6th time step was stored, getting a resolution 
of 150 stored value-sets for the stator and 225 for the rotor. The weighting factor for the updates 
was set to 0.7. The calculation time was about four weeks on a modern 1.25 GHz. 64-bit computer. 

The calculation parameters were tested by a quasi 3D investigation of the presented test case. 
Brilliant agreement for multi-passage (two stator channels, three rotor channel) and phase-lagged 
(one channel each) results was achieved, proving the valid application of the phase-lagged 
boundary conditions in terms of method and parameters for that test case. 

 
MEASUREMENT SETUP 

The optical velocity measurements of the flow were performed using a two-dimensional LDV-
system (Göttlich et al. 2004). Optical access was realized through a small glass window, to gain the 
axial and circumferential velocity. The data were recorded in five axial planes by point-wise 
detection along radial lines, circumferential traversing was achieved by turning the stator-casing. To 
allow a rotor-phase-resolved analysis of the measured velocities, a reference signal provided by the 
monitoring system of the turbine was used to trigger the data sampling.  

The data of two planes were used to compare with the numerical results, plane B1 is located 
close behind the trailing edge of the stator and plane C1 is located close behind the rotor (Fig. 2 and 
Fig. 4). 
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pitch 
     

 

pitch 
 

                (a) plane B1        (b) plane C1 

Fig. 4: Measurement grid 

RESULTS 

Comparison of Measured and Calculated Data 
The comparison of measured and calculated data is performed by evaluating the time-pitch plot 

and the time-span plot of axial and circumferential (against pitch-wise direction) velocity. 

Plane B1 
The time-pitch plot in plane B1 at 54% span points out a shock-wave that strongly alters the 

circumferential velocity (Fig.5, mark A). The measurements and the CFD results disagree in its 
position, but both show the shock-position to be almost time independent.  

In the wake (Fig.5, mark B) vortex structures can be detected. The wake is showing phase locked 
wake shedding that must be periodically triggered. The measurements show seven vortices a period, 
the CFD results six. The wake is slightly deflected in pitch-wise direction at about t/T = 0.5 for 
CFD and t/T = 0.4 for measurements.  

Periodically a shock-wave crosses the evaluation domain (Fig.5, mark C) and a significant 
stronger vortex in the wake can be detected after that in the measurements and in CFD results 
(Fig.5, mark D). The CFD results capture both phenomena well, but they are time-delayed 
compared to the measurements. 

The axial velocity shown in the time-span plot of a radial line positioned at pitch 0.3 (within the 
wake) indicates cylindrical vortex shedding in CFD results (Fig. 6(a)), the measurements detect the 
breakup of that cylindrical behavior by an additional vortex below span 30% (Fig. 6(b), arrow). The 
axial velocity decrease (Fig. 6, mark A), that is well predicted in CFD results but time delayed 
compared to the measurements, indicates that the triggering mechanism of the wake shedding 
differs in span position. 

Further investigations have to be carried out to detect the reasons for the time delay of the 
numerical results. 
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Figure 5: Plane B1, at 54% span 
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Figure 6: Plane B1, at 0.3 pitch, axial velocity 
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Plane C1 
The absolute-frame point of view causes all effects, that refer to the moving position of the rotor 

blade, to be inclined. The time-pitch plot (the pitch still represents the stator pitch) in plane C1 at 
53% span shows as well phase-locked wake shedding (Fig.7, mark A) behind the rotor trailing edge. 
Both, measurements and CFD results show nine vortices per one stator blade passing period. There 
is some periodic increase of the axial velocity component within the wake in good agreement 
between CFD results and measurements (Fig.7, marked with a white circle), but no strong shock 
wave can be detected, to cause the phase locking of the vortex shedding.  

 

B
C

A

t/T

A

B 

C

t/T  
         (a) circumferential velocity, CFD    (b) circumferential velocity, LDV 

 

 t/T t/T  
         (c) axial velocity, CFD      (d) axial velocity, LDV 

Figure 7: Plane C1, at 53% span 

The circumferential velocity plots show furthermore the position of the suction side trailing edge 
shock (Fig.7, mark B), and another one (Fig.7, mark C), that is assumed to be the reflection of the 
pressure side trailing edge shock of the neighboring blade, being reflected at the aft section of the 
suction side. In good agreement of CFD results and measurements the positions of these shocks are 
very much time-independent referring to the moving rotor blade. 
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Wake Shedding Triggering Mechanism at the Stator Trailing Edge 
The suction side shock extends across the interface towards the rotor blade (Fig.8, fat line at 

t/T_=_0.14, and Fig. 5, mark A), being periodically reflected. This reflected shock wave moves 
back again towards the suction side of the stator blade (Fig.8, dashed line and Fig.5, mark C) and 
impinges on the trailing edge (Fig.8, t/T = 0.28). There it forces the wake to a vortex-separation 
(Fig. 8, arrow). From then on the wake shedding is undisturbed, until the next reflected shock wave 
triggers a vortex again. 

 
 

  

 

  

 

 

pitch 

   t/T = 0.14  t/T = 0.21  t/T = 0.28 
 

 

  

 

  

 

 
   t/T = 0.35  t/T = 0.42  t/T = 0.49 

Figure 8: Stator wake at 50% span, lines indicate isobars, grayscale indicates entropy  

Comparison of Time Resolved and Steady State Calculation 
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Figure 9: Power of one blade 

The time resolved power of one blade (Fig. 9) shows two peaks a period and 24% peak-to-peak 
value referring to the time mean value. The steady state calculation overestimates the power by 
1.1% compared to the time mean value.  

The entropy distribution behind the stator trailing edge shows a distinct wake for the steady state 
calculation (Fig.10, left, dashed line), whereas the time mean of the unsteady calculation shows an 
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extension of the influence domain by the wake to about 2/3 of the whole channel, due to the vortex 
shedding. The position of the trailing edge shock, indicated by a sharp entropy rise, is very the same 
for the steady state calculation and the time mean of the unsteady calculation (Fig.10, arrow). 

 
 

              

 

 
    steady state     time mean of the unsteady calculation 

Figure 10: Stator exit flow, grayscale and lines indicate entropy  
 

 
steady state 

 
time mean of the unsteady calculation 

Figure 11: Flow at radius 0.225 m (about mid-span), grayscale indicates relative Mach number, 
lines indicate pressure  

Figure 11 shows the flow field of the steady state and the time mean of the unsteady calculation 
at about mid-span. There is very well agreement in terms of Mach number and pressure for stator 
and rotor domain, apart from the stator wake (Fig.11, white arrow), that is smoothed by the 
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unsteady calculation, and the stator trailing edge shock (Fig.11, black arrow) that is slightly 
stronger predicted by the steady state calculation. Nevertheless the steady state calculation is very 
capable of predicting the time mean flow.  
 

CONCLUSIONS 
A numerical study of the three-dimensional unsteady flow through a transonic turbine stage was 

carried out using an innovative flow solver.  
The code is based on the characteristic flow equations to avoid time consuming matrix 

manipulations necessary for conservative solvers, thus leading to a fast algorithm. To further reduce 
computer time a novel approach for a boundary-layer simulating wall-function was introduced, that 
considers the influence of the pressure gradients on the shear-stress distribution perpendicular to the 
wall surface. To gain periodic solutions in time and space, phase lagged boundary conditions at 
geometrical periodic boundaries and at the interface between stator and rotor domain were applied. 

By comparison with measurement data the numerical method proved to predict the unsteady 
three-dimensional effects well, though some disagreements could by detected. The phenomenon of 
phase locked wake shedding could be verified by CFD results and its mechanism behind the stator 
trailing edge could by described. The suction side trailing edge shock wave of the stator proves to 
be responsible for that phenomenon. The shock wave periodically hits the rotor suction side, and the 
reflection moves back to the stator trailing edge, triggering the vortex shedding. 
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