Experimentelle Untersuchung des Einflusses von Wirbelgeneratoren auf ablösende Diffusorströmungen

Diplomarbeit
von
Cornelia Santner

durchgeführt am
Institut für Thermische Turbomaschinen und Maschinendynamik
an der
Technischen Universität Graz

Vorstand:
Univ.-Prof. Dr.-Ing. Franz Heitmeir

Betreuer:
Dipl.-Ing. Dr.techn. Emil Göttlich
Dipl.-Ing. Andreas Marn

Graz, im Februar 2008
Vorwort

Hiermit möchte ich mich bei Herrn Univ. Prof. Dr.-Ing. Franz Heitmeir bedanken, der es mir ermöglichte, die vorliegende Diplomarbeit am Institut zu verfassen.

Ein besonderer Dank gilt meinen Betreuern Herrn Dipl.-Ing. Dr.techn. Emil Göttlich und Herrn Dipl.-Ing. Andreas Marn, die mir über die gesamte Dauer der Diplomarbeit stets mit Rat und Tat zur Seite standen.

Besonderer Dank gebührt meinen Eltern, die mir in meiner Berufswahl freie Hand ließen, und mich während meiner gesamten Studienlaufbahn unterstützt haben, wo sie nur konnten.

Vor allem aber möchte ich meinem Freund Roman für seine Unterstützung und den Rückhalt, den er mir während meines gesamten Studiums gab, danken.

Graz, im Februar 2008

Cornelia Santner
Kurzfassung

Die positive Strömungsbeeinflussung durch die Wirbelgeneratoren konnte eindeutig nachgewiesen werden: Der Beginn der Ablösung findet deutlich weiter stromabwärts statt, die Höhe des Rückströmgebietes reduziert sich um mehr als die Hälfte.

Abstract

The actual work presents the experimental investigation of low profile vortex generators and their influence onto the turbulent flow through S-shaped intermediate ducts. Vortex generators are one example of passive flow control of boundary layers. The measurements were performed in the transonic wind tunnel of the Institute for Thermal Turbomachinery and Machine Dynamics at Graz University of Technology.

The purpose of this work was the determination of the influence of vortex generators onto separations on curved surfaces. Therefore a rectangular S-shaped 2D-duct has been used which represents the flow through an annular turbine inter stage diffuser of a modern high-bypass turbofan jet engine. Due to the strong turning, the adverse pressure gradient and the high Mach number the flow separates right after the first bend and forms a distinct back flow region over a large part of the channel height further downstream.

The investigation has been performed without and with vortex generators in order to evaluate their effectiveness. Oil-flow visualization was used for a qualitative study of the surface flow, Laser-optical measurement techniques like Laser-Doppler-Velocimetry, Laser-Vibrometry and Particle-Image-Velocimetry as well as conventional pressure reading methods were applied to quantify the differences.

The positive influence of the vortex generators onto the flow has been confirmed clearly: The onset of the separation is shifted downstream and the height of the back flow region is reduced below 50%.
Inhaltsverzeichnis

1 Einleitung ... 1
 1.1 Motivation ... 1
 1.2 Beschreibung des Projekts AIDA... 3
 1.3 Aufgabenstellung .. 5

2 Theoretische Grundlagen ... 6
 2.1 Grenzschichttheorie .. 6
 2.1.1 Laminare Grenzschicht ... 7
 2.1.2 Turbulente Grenzschicht .. 7
 2.1.3 Charakteristische Größen zur Beschreibung der Grenzschicht............................. 10
 2.1.4 Grenzschichtablösung .. 11
 2.2 Maßnahmen zur Verhinderung der Grenzschichtablösung 12
 2.2.1 Maßnahmen zur aktiven Beeinflussung der Grenzschichtströmung (Active Flow Control) ... 12
 2.2.2 Maßnahmen zur passiven Beeinflussung der Grenzschichtströmung (Passive Flow Control) ... 14
 2.3 Wirbelgeneratoren .. 14
 2.4 Diffusoren .. 16
 2.4.1 Zwischendiffu sor (Übergangskanal) .. 18
 2.4.2 Strömungsscharakteristik hochaggressiver Zwischendiffusoren 19

3 Versuchseinrichtung ... 21
 3.1 Verdichteranlage .. 21
 3.2 Transsonischer Windkanal ... 22
 3.2.1 Versuchsaufbau .. 23
 3.2.2 Versuchsbedingungen ... 26

4 Messtechnik .. 28
 4.1 Druck- und Temperaturmessung .. 28
 4.1.1 Messdatenerfassung ... 28
 4.1.2 Totaltemperaturmessung ... 28
 4.1.3 Druckmessung ... 28
 4.2 Ölanstrich .. 31
 4.3 Teilchenfolgevermögen ... 32
 4.4 Particle-Image-Velocimetry ... 34
 4.4.1 Prinzip des Messverfahrens ... 34
 4.4.2 Beschreibung des verwendeten PIV-Systems ... 35
 4.4.3 Datenauswertung ... 36
 4.5 Laser-Doppler-Anemometrie (LDA) .. 37
 4.5.1 Prinzip des Messverfahrens ... 37
 4.5.2 Auswertung der Messdaten ... 40
 4.5.3 Beschreibung des verwendeten LDA-Systems .. 41
 4.6 Laservibrometer .. 43
 4.6.1 Prinzip des Messverfahrens ... 43
 4.6.2 Beschreibung des verwendeten Systems ... 44
Nomenklatur

Lateinische Formelzeichen

<table>
<thead>
<tr>
<th>Zeichen</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Konstante im logarithmischen Wandgesetz</td>
</tr>
<tr>
<td>Cₚ</td>
<td>Druckbeiwert</td>
</tr>
<tr>
<td>Cₚ</td>
<td>Druckrückgewinnungsfaktor</td>
</tr>
<tr>
<td>Cₚ*</td>
<td>Maximaler Druckrückgewinn bei vorgeschriebenem dimensionslosem Verhältnis</td>
</tr>
<tr>
<td>Cₚ**</td>
<td>maximaler Druckrückgewinn bei vorgeschriebenem dimensionslosem Flächenverhältnis</td>
</tr>
<tr>
<td>cₜ</td>
<td>Umfangskomponente der Absolutgeschwindigkeit im Geschwindigkeitsdreieck</td>
</tr>
<tr>
<td>D</td>
<td>Durchmesser</td>
</tr>
<tr>
<td>d</td>
<td>Innendurchmesser</td>
</tr>
<tr>
<td>f</td>
<td>Brennweite</td>
</tr>
<tr>
<td>f</td>
<td>Frequenz</td>
</tr>
<tr>
<td>fₒD</td>
<td>Dopplerfrequenz</td>
</tr>
<tr>
<td>fₛ</td>
<td>Shiftfrequenz</td>
</tr>
<tr>
<td>G</td>
<td>Gladstone-Dale-Konstante</td>
</tr>
<tr>
<td>G(s)</td>
<td>Übertragungsfunktion</td>
</tr>
<tr>
<td>H₁₂</td>
<td>Formfaktor (shape factor)</td>
</tr>
<tr>
<td>I</td>
<td>Intensität</td>
</tr>
<tr>
<td>i</td>
<td>komplexe Einheit</td>
</tr>
<tr>
<td>h</td>
<td>Höhe</td>
</tr>
<tr>
<td>l</td>
<td>Prandtlscher Mischungsweg</td>
</tr>
<tr>
<td>l</td>
<td>Charakteristische Länge für Strouhal-Zahl</td>
</tr>
<tr>
<td>L</td>
<td>Plattenlänge</td>
</tr>
<tr>
<td>m</td>
<td>Massenstrom</td>
</tr>
<tr>
<td>Ma</td>
<td>Machzahl</td>
</tr>
<tr>
<td>N</td>
<td>Länge des Diffusors</td>
</tr>
<tr>
<td>Nₐf</td>
<td>Streifenanzahl</td>
</tr>
<tr>
<td>n</td>
<td>Brechungsindex</td>
</tr>
<tr>
<td>p</td>
<td>Statischer Druck</td>
</tr>
<tr>
<td>R</td>
<td>Krümmungsradius</td>
</tr>
<tr>
<td>Re</td>
<td>Reynoldszahl</td>
</tr>
<tr>
<td>rₒ</td>
<td>Strahlradius</td>
</tr>
<tr>
<td>s</td>
<td>Frequenzkonstante in der Übertragungsfunktion</td>
</tr>
<tr>
<td>Sr</td>
<td>Strouhalzahl</td>
</tr>
<tr>
<td>T</td>
<td>Temperatur</td>
</tr>
<tr>
<td>t</td>
<td>Zeit</td>
</tr>
<tr>
<td>u</td>
<td>Umfangsgeschwindigkeit des Rotors</td>
</tr>
<tr>
<td>uₚ</td>
<td>Geschwindigkeitskomponente in Strömungsrichtung (LDA)</td>
</tr>
<tr>
<td>u, v, w</td>
<td>Geschwindigkeitskomponenten in x-, y-, z-Richtung</td>
</tr>
<tr>
<td>uₑ</td>
<td>Teilchenendgeschwindigkeit</td>
</tr>
<tr>
<td>uₓ</td>
<td>Schubspannungsgeschwindigkeit</td>
</tr>
<tr>
<td>Uₑ</td>
<td>Geschwindigkeit der ungestörten Außenströmung</td>
</tr>
<tr>
<td>v</td>
<td>Geschwindigkeitskomponente normal zur Strömungsrichtung (LDA)</td>
</tr>
<tr>
<td>W</td>
<td>Querschnittsfläche</td>
</tr>
</tbody>
</table>
Griechische Symbole

Δh [kJ/kg] Stufengefälle der Turbine bzw. des Verdichters
Δx [m] Streifenabstand
$\Delta \varphi$ [$^\circ$] Phasendifferenz
δ [m] Grenzschichtdicke
δ_1 [m] Verdrängungsdicke
δ_2 [m] Impulsverlustdicke
ε_φ [-] „Diffusorwirkungsgrad“ bzw. -effektivität
Θ [$^\circ$] Schnittwinkel der Laserstrahlen
κ [-] Konstante im logarithmischen Wandgesetz
κ [-] Isentropenexponent
λ [m] Wellenlänge
μ [Ns/m²] Dynamische Viskosität
ν [m²/s] Kinematische Viskosität
ρ [kg/m³] Dichte
τ [s] Relaxationszeit
τ [N/m²] Schubspannung
τ_i [N/m²] Reynoldsspannung
Φ [$^\circ$] Öffnungswinkel des Diffusors

Indizes

D Doppler
f Fluid
i ideal
m Messvolumen
t Totalgröße
p Teilchen
ref Referenzwert
u Umgebungsgröße
W Wand
WG Wirbelgenerator
∞ Außenströmung
1 Eintritt
2 Austritt

Hochgestellte Symbole

` Turbulente Schwankung
- Mittelwert
+ Dimensionslose Größe

Abkürzungen

AIDA Aggressive Intermediate Duct Aerodynamics for Competitive and Environmentally Friendly Jet Engines
WG (VG) Wirbelgenerator, (vortex generator)
AR Flächenverhältnis Aus- zu Eintrittsfläche (area ratio)
LDA Laser-Doppler-Anemometer
PIV Particle Image Velocimeter
AT arrival time
TT transit time
BSA Burst Spectrum Analyser
1 Einleitung

1.1 Motivation

Ein weiterer Grund zur Effizienzsteigerung der Flugzeuge, bzw. deren Triebwerke, sind die damit verbundenen Einsparungen von ohnedies nur begrenzt vorhandenen fossilen Energieträgern, was in Zeiten steigender Rohstoffpreise eine nicht unerhebliche Kosteneinsparung mit sich bringt, welche nicht nur den Fluggästen zu Gute kommt. Wenn man bedenkt, dass sich der Gewinn einer Fluglinie in der Größenordnung von ca. 1 % ihrer Kerosinkosten bewegt, entspricht die Reduktion des Kerosinverbrauches um z.B. 1 % einer Verdopplung des Gewinns.

Bild 1.1– Fan-Triebwerk GP7000 (www.aircraftenginedesign.com)

Durch die Optimierung der Verbrennung und den Einsatz neuer Brennkammertechnologien kann der Schadstoffausstoß drastisch reduziert werden. Etwa durch Steigerung des Ausbrenngrads der Brennkammer ist es möglich den Brennstoffverbrauch zu senken, was in weiterer Folge auch wieder zu einer Reduktion der Schadstoffemissionen führt.

Bild 1.2– Prinzip eines zweiweligen Fantriebwerks (www.wikipedia.org)

Bei der Zweidrillenbauart treibt die Niederdruck-Turbine den Fan und meist auch den Niederdruck-Triebwerk über eine eigene Welle direkt an, was jedoch zur Folge hat, dass diese dieselbe Drehzahl wie der Fan haben muss. Das führt zwangsläufig zu langsam drehenden Niederdruckturbinen. Um nun aber die gleiche Arbeit pro Stufe umzusetzen zu können, müssen diese auf einem größeren Radius laufen (vgl. Euler Hauptgleichung \(\Delta h = u \cdot c_a \), bei der, bei gleicher Umlenkung, die Umfangsgeschwindigkeit für die Arbeitsumsetzung entscheidend ist, d. h. man muss die niedrige Drehzahl durch einen größeren Radius kompensieren). Demzufolge muss man, je größer der Fanfahrmesser wird, auch den Radius der Niederdruckturbine entsprechend erhöhen. Zu diesem Zweck werden sowohl der Außen- (Gehäuse) als auch der Innendurchmesser (Nabe) der Turbinenstufe nach außen versetzt. Dies macht den Einsatz S-förmig gekrümmter, verzögernder Übergangskanäle (intermediate turbine ducts) zur Verbindung der Hochdruck- mit der Niederdruckstufe notwendig, siehe Bild 1.1. Durch die Strömungsverzögerung steigt zwar das Risiko der Strömungsablösung an den Kanalwänden, aber ein nicht verzögernder Kanal würde zu große Radiuszunahmen und zu geringe Schaufellängen mit sich bringen.

Die Verkürzung dieser Kanäle und somit des gesamten Triebwerks und der -gondel bzw. deren Effizienzsteigerung stellt eine große Herausforderung dar. Je kürzer diese werden, umso stärker wird die Strömung umgelenkt, was die Gefahr einer Strömungsablösung und somit eines extremen Leistungseinbruchs oder sogar den Ausfall des Triebwerks erhöht. Das EU-Projekt AIDA, das im Folgenden beschrieben wird, beschäftigt sich mit der Optimierung dieser Übergangskanäle.

1.2 Beschreibung des Projekts AIDA

Wichtige technische und wissenschaftliche Ziele des Projekts sind unter anderem:

- ein besseres Verständnis der Strömung in aggressiven, d. h. stark gekrümmten S-förmigen Übergangskanälen mit hohen Strömungsverzögerungen (high diffusion design)
- Entwicklung und Tests neuartiger sehr aggressiver Übergangskanäle (Intermediate Ducts)
- Bewertung fortgeschrittener Schaufel-Kanal-Integrationskonzepte
- Einrichtung gültiger Analysemethoden und „CFD Best Practice Guidelines“ für Kanalströmungen
- Prüfung und Modellierung neuartiger passiver Einrichtungen (Wirbelgeneratoren) zur Verminderung der Grenzschichtablösung in extrem aggressiven Übergangskanälen
- Entwicklung innovativer numerischer Optimierungstechniken für Übergangskanäle
- Schaffung allgemeingültiger Designregeln sowie einer validierten Datenbank für Zwischenkanäle
Die Aufgabe des Instituts für Thermische Turbomaschinen der Technischen Universität Graz im Rahmen des Projekts ist die Untersuchung eines aggressiven S-förmigen Übergangskanals mit (C3) bzw. ohne Stützrippen (C4), und eines hochaggressiven Übergangskanals (C5) in der institutseigenen transsonischen Versuchsturbinenanlage (einstufige Hochdruckturbine – Übergangskanal - Stator der ersten Stufe der Niederdruckturbine). Eine nähere Beschreibung der Versuchsturbine findet sich in Erhard et al., 2002. Die einzelnen Konfigurationen (C3, C4, C5) sind in Bild 1.3 dargestellt. Die Untersuchung der Strömungsverhältnisse erfolgte bei zwei unterschiedlichen Auslegungspunkten (aero design points). Außerdem wurde der Spalt zwischen den Rotorschaufelspitzen und dem Gehäuse variiert (0,8 und 1,3 mm), um dessen Einfluss auf das Strömungsverhalten im Kanal zu bestimmen.

Bild 1.3– Ausschnitt aus Versuchsturbine mit den verschiedenen Übergangskanälen (rot umrandet)

Die Konfiguration C5 ist im Gegensatz zu C3 und C4 so ausgelegt, dass sie an der Außenkontur ablöst, um die Erprobung der so genannten Niedrigprofil-Wirbelgeneratoren (low-profile vortex generators) zu ermöglichen, welche speziell für diese Anwendung an den Universitäten Chalmers (gerechnet) und Genua (experimentell im subsonischen Windkanal bei Reynoldsähnlichkeit an der ebenen Platte) getestet wurden, siehe Bild 1.4.

Bild 1.4 Geometrie und Anordnung der Wirbelgeneratoren (links) sowie deren Positionierung in der Versuchsturbine

Diese sollen die Strömungsablösung stromabwärts verschieben, bzw. wenn möglich, vollständig verhindern, indem sie aufgrund ihrer Form gegenläufige Wirbel erzeugen, die höherenergetisches Fluid von der Außenströmung an die Wand transportieren. Durch die daraus resultierende Impulserhöhung liegt die Strömung länger an. Deren Wirkung wurde bisher nur an der ebenen Platte in einem Windkanal mit geringen Strömungsgeschwindigkeiten erprobt, das heißt es gibt noch keine fundierten Erkenntnisse darüber, wie ihre Wirkung durch die Geometrie des Übergangskanals, die hohen Geschwindigkeiten und durch Strömungseffekte, wie Nachläufe von Schaufeln oder auch Spaltwirbeln, die aufgrund stromaufwärts gelegener Turbinenstufen entstehen, beeinflusst wird. Aus diesem Grund war es notwendig, vor dem Einsatz der Wirbelgeneratoren in der Versuchsturbine den Einfluss der geometrischen Faktoren des Kanals (Diffusorform, starke Krümmung der Kontur) auf die Effektivität der Wirbelgeneratoren unter realistischen Strömungsgeschwindigkeiten (Machzahlähnlichkeit) zu untersuchen, was im Rahmen der vorliegenden Arbeit geschah.
1.3 Aufgabenstellung

Das primäre Ziel dieser Arbeit war festzustellen, welchen Einfluss die geometrischen Faktoren des hoch aggressiven Übergangskanals (C5), d. h. die Krümmung der Außenwand und die strömungsverzögernde Wirkung des Kanals, auf den Verlauf der Strömung haben, bzw. ob diese, wie vorgesehen, an der Außenkontur ablöst. Nachdem dies verifiziert werden konnte, erfolgten in weiterer Folge Untersuchungen, ob die Wirbelgeneratoren auch den gewünschten Effekt, nämlich das Verschieben der Ablösung stromabwärts sowie das Verringern ihrer Ausdehnung, erzielen.

Da die Versuche im transsonischen Windkanal des Institutes für Thermische Turbomaschinen und Maschinendynamik durchgeführt werden sollten, wurde der ringförmige Querschnitt des Kanals in einen rechteckigen Querschnitt, unter Beibehaltung des Verlaufs der äußeren Kontur und des Flächenverhältnisses, übergeführt. Anschließend erfolgte die Fertigung des Versuchseinsatzes für den Windkanal, welcher in Bild 1.5 zu sehen ist.

Zur Untersuchung der Strömung im Bereich der äußeren Kanalkontur kamen verschiedenste berührungsfreie, optische Messsysteme (LDA, PIV, LV), sowie herkömmliche, druckmessende Verfahren (statische und Totaldruckmessung) zum Einsatz. Ölänstriche und Schlierenaufnahmen dienten zur qualitativen Bestimmung der Strömung an der Oberfläche, sowie der ungefähren Bestimmung des Beginns und der Ausdehnung der Ablösung.

![Bild 1.5– Einsatz für die Untersuchungen im transsonischen Windkanal](image-url)
2 Theoretische Grundlagen

2.1 Grenzschichttheorie

Bis zum Anfang des 20. Jahrhunderts wurde bei strömungsmechanischen Problemen die Reibung im betrachteten Fluid meist vernachlässigt, was zu starken Diskrepanzen zwischen Theorie und Wirklichkeit führte. Es gab zu dieser Zeit zwei unterschiedliche Richtungen der Strömungsmechanik, die theoretische Hydrodynamik und die praktisch orientierte Hydraulik, die in vielen Fällen komplett verschiedene Ergebnisse lieferten. Ludwig Prandtl gelang es Anfang des 20. Jahrhunderts mit der so genannten Grenzschichttheorie diese Ungereimtheiten zu beseitigen.

Die Kernaussage der von Prandtl begründeten Grenzschichttheorie besagt, dass Strömungen um einen Körper (z. B. ebene Platte, Zylinder, Tragflügelprofil) im Bereich hoher Reynoldszahlen in zwei Bereiche unterteilt werden müssen:

Reibunglose Außenströmung

In diesem Bereich sind die Reibungskräfte im Vergleich zu den Trägheitskräften vernachlässigbar klein. Die Strömung kann als reibungsfrei betrachtet werden.

Dünne Grenzschicht

Bei der Grenzschicht an der Wand hingegen sind die Reibungskräfte in der gleichen Größenordnung wie die Trägheitskräfte, wodurch die Reibung hier sehr wohl beachtet werden muss. Außerdem muss an der Wand immer die Haftbedingung \(u = 0, v = 0 \) erfüllt sein. Für die dadurch entstehende Wandschubspannung gilt:

\[
\tau_W = -\frac{\partial u}{\partial y}
\]

Bild 2.1– Übergang von laminarer auf turbulente Grenzschicht entlang längs angeströmten ebenen Platte (Schlichting; Gersten, 1997)

Die Grenzschicht kann turbulent oder laminar sein. Meist ist diese zu Beginn laminar und schlägt in eine turbulente Grenzschicht um. Der Zeitpunkt des Umschlags hängt vor allem vom Druckverlauf und der Reynoldszahl der Außenströmung, sowie der Oberflächenrauhigkeit ab. D. h. je höher die Reynoldszahl bzw. je kleiner die Viskosität ist, desto früher erfolgt der Umschlag. Dasselbe gilt für die Oberflächenrauhigkeit.
Beim Druckverlauf gilt folgendes: Tritt ein Druckanstieg in Strömungsrichtung (positives Druckgefälle) auf, kommt es zu einem früheren Umschlag der Grenzschichtströmung als ohne diesen. Fällt der Druck jedoch entlang der überströmten Kontur ab (negatives Druckgefälle), bleibt die laminare Grenzschicht länger stabil.

Der Übergang von laminarer auf turbulente Strömung erfolgt in der Realität in einem endlichen Bereich. In der Theorie nimmt man der Einfachheit halber aber meist einen abrupten Wechsel an einem definierten Punkt an.

In Bild 2.1 ist der reale laminar-turbulente Übergang anhand der Umströmung einer ebenen Platte skizziert. Es ist auch zu erkennen, dass beim Wechsel von laminare auf turbulente Grenzschicht, die Dicke derselben erheblich ansteigt. Dies wird durch die auftretenden Querbewegungen in der turbulenten Strömung verursacht.

2.1.1 Laminare Grenzschicht

Für die Berechnung der laminaren Grenzschichtströmung werden die Navier-Stokes-Gleichungen herangezogen, und über eine Dimensionsanalyse die Prandtl´schen Grenzschichtgleichungen hergeleitet (genaue Herleitung siehe Schlichting; Gersten, 1997). Für eine ebene, längs angeströmte Platte sehen die Grenzschichtgleichungen für den inkompressiblen Fall folgendermaßen aus:

\[\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \]

\[\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = - \frac{1}{\rho} \frac{\partial p}{\partial x} + \nu \frac{\partial^2 u}{\partial y^2} \]

Mit den Randbedingungen:
\(y=0: \ u=0, \ v=0 \)
\(y=\infty: \ u=U(x,t) \)

Der Druck \(p \) wird immer von der Außenströmung auf die Grenzschicht aufgeprägt, wodurch sich bei der ebenen Platten nur eine Abhängigkeit von der Lauflänge \(x \) ergibt (\(p = p(x) \)). Diese Aussage gilt auch für gekrümmte, umströmte Oberflächen mit dem Krümmungsradius \(R(x) \), solange gilt:

\[R(x) \gg \delta(x) \]

Es wird hier nicht weiter auf die laminare Grenzschicht eingegangen, da sich aus der Berechnung der Reynoldszahl für die ebene Platte sowie für Kanalströmung ergab, dass beide über dem kritischen Wert für die Reynoldszahl liegen, d. h. dass die Strömung auf jeden Fall turbulent ist.

2.1.2 Turbulente Grenzschicht

Die turbulente Grenzschicht zeichnet sich durch die vorherrschenden, instationären Strömungsverhältnisse aus, d. h. dass in einem festgehaltenen Raumpunkt die Geschwindigkeiten sowie der Druck unregelmäßige Schwankungen aufweisen. Diese Größen setzen sich aus einem zeitlich konstanten Mittelwert und zeitlich variierenden Schwankungsbewegungen zusammen.

\[u(t) = \bar{u} + u' \quad v(t) = \bar{v} + v' \quad w(t) = \bar{w} + w' \quad p(t) = \bar{p} + p' \]
Es soll nun wieder eine ebene, stationäre, inkompressible Strömung betrachtet werden. Zur Bestimmung der turbulenten Grenzschichtgleichungen wird analog wie bei der laminaren Grenzschicht vorgegangen (Dimensionsanalyse). Das Ergebnis sieht folgendermaßen aus:

\[
\frac{\partial \bar{u}}{\partial x} + \frac{\partial \bar{v}}{\partial y} = 0
\]

\[
\bar{u} \frac{\partial \bar{u}}{\partial x} + \bar{v} \frac{\partial \bar{u}}{\partial y} = -\frac{1}{\rho} \frac{d\bar{p}}{dx} + \nu \left(\frac{\partial^2 \bar{u}}{\partial y^2} - \frac{\partial \bar{v} \partial \bar{u}}{\partial y} \right)
\]

wobei

\[-\rho \cdot \bar{u} \bar{v}' = \tau_t\]

die aufgrund der Turbulenzen auftretende „scheinbare Spannung“ ist (auch Reynoldsspannung genannt). Mithilfe der Formel für den Prandtlschen Mischungswegansatz kann für \(\tau_t\) auch geschrieben werden (Herleitung siehe Schlichting; Gersten, 1997)

\[
\tau_t = \rho l^2 \left(\bar{u} \left(\frac{\partial \bar{u}}{\partial y} \right) \right)
\]

Der Term \(\tau_t\) ist eine Unbekannte, für die eine zusätzliche Bedingung notwendig ist, um das Gleichungssystem lösen zu können. Für die Bestimmung von \(\tau_t\) werden so genannte Turbulenzmodelle herangezogen, die die turbulenten Schwankungen in der Grenzschicht nachbilden. Es gibt jedoch einige wenige Grenzschichtströmungen, wie Kanalströmungen und die Strömung entlang einer ebenen Platte, deren Lösung auch ohne die Modellierung von Turbulenzen auf analytischem Weg möglich ist. Dazu wird die Annahme von Prandtl herangezogen, dass die Schubspannung \(\tau\), bestehend aus dem viskosen und dem turbulenten Anteil, konstant ist und überall den Wert der Wandschubspannung \(\tau_W\) habe.

\[
\tau = \tau_W = \tau_{visk} + \tau_t = \rho \left(\nu + l^2 \left(\bar{u} \left(\frac{\partial \bar{u}}{\partial y} \right) \right) \right)
\]

Als nächster Schritt wird die Schubspannungsgeschwindigkeit \(u_r\) eingeführt

\[
u_r = \sqrt{\frac{\tau_W}{\rho}}
\]

womit man folgende dimensionslose Größen erhält:

\[
u^+ = \frac{\bar{u}}{u_r} \quad y^+ = \frac{y u_r}{\nu}
\]

1 Der Betrag von \(\partial u / \partial y\) wird aufgrund der Tatsache eingeführt, dass dessen Vorzeichen der Reynoldsspannung entspricht.
Eingesetzt in die Gleichung für die Schubspannung τ ergibt sich folgendes Integral

$$u^+ = \int_{y^+=0}^{y^+} \frac{2dy^+}{1 + \sqrt{1 + 4y'^2}}$$

welches für die verschiedenen Bereiche der turbulenten Grenzschicht ausgewertet werden muss, siehe Bild 2.2.

![Bild 2.2 – Aufbau der turbulenten Grenzschicht entlang einer ebenen Platte (Brenn et al., 2003)](image)

I. laminare, viskose Unterschicht

$\tau_l \ll \tau_l$

$0 \leq y^+ \leq 5$

In der laminaren Unterschicht gelten dieselben Gesetze wie in der laminaren Grenzschicht.

II. turbulente Innenschicht

$\tau_t \approx \tau_l$

$5 \leq y^+ \leq 26$

Bei der laminaren Innenschicht sind der viskose und der turbulente Anteil gleich groß, d. h. das Integral für u^+ muss voll ausgewertet werden.

III. turbulente Außenschicht

$\tau_t \gg \tau_l$

$y^+ > 26$ aber $y^+ / \delta \leq 0,2$

Für die turbulente Außenschicht kommt das logarithmische Überlappungsgesetz zum Tragen.

$$u^+ = \frac{1}{\kappa} \ln y^+ + B$$

wobei $\kappa=0,4$ und $B=5,5$

Bei der Durchströmung von Rohren und Kanälen erstreckt sich die turbulente Außenschicht nach einer gewissen Lauflänge bis zur Kanalmitte (voll entwickelte turbulente Strömung). Bei der Strömung entlang einer gekrümmten Wand muss diese äußere Schicht in zwei Bereiche unterteilt werden. Im unteren, der Wand näheren, Bereich wirken sich Krümmungen und somit Druckgradienten der Außenströmung nur geringfügig aus, daher gilt hier weiterhin das logarithmische Überlappungsgesetz. Beim weiter außen liegende Teil muss dieser Druckgradient berücksichtigt werden, siehe Bild 2.3.

![Bild 2.3 – Aufbau der turbulenten Grenzschicht entlang einer gekrümmten Wand (Überlappungs- schichten nicht dargestellt), (Brenn et al., 2003)](image)
2.1.3 Charakteristische Größen zur Beschreibung der Grenzschicht

Grenzschichtdicke

In den meisten Fällen ist eine numerische Ermittlung der Grenzschichtdicke notwendig, da nur für wenige Sonderfälle eine analytische Lösung existiert, wie zum Beispiel für die ebene Platte bei laminarer Strömung (Blasius-Lösung).

\[\delta = 5 \cdot \frac{1}{\sqrt{Re_x}} \cdot x \quad \text{für} \quad \frac{u}{U_\infty} = 0.99 \]

Im Rahmen dieser Arbeit wurde das Ende der Grenzschicht bei der maximal auftretenden Geschwindigkeit angenommen, was für die Grenzschicht am Kanaleintritt eine Höhe von 4,8 mm ergab.

Verdrängungdicke

Die Verdrängungdicke ist ein Maß für die Verdrängungswirkung der Grenzschicht. Sie ist definiert als der Betrag der am Rand der Grenzschicht auftretenden Verschiebung einer realen gegenüber einer idealen Stromlinie.

\[\delta_1 = \int_0^\infty \left(1 - \frac{u}{U_\infty}\right) dy \]

Impulsverlustdicke

Die Impulsverlustdicke berücksichtigt den infolge der Reibung geringeren Impulsdurchfluss in der Grenzschicht gegenüber der Außenströmung.

\[\delta_2 = \int_0^\infty \frac{u}{U_\infty} \left(1 - \frac{u}{U_\infty}\right) dy \]

Formfaktor (shape factor)

Der Formfaktor ist ein wichtiges Maß zur Bestimmung der Art der Grenzschicht, d. h. ob diese laminar oder turbulent ist bzw. eine Ablösung vorhanden ist. Er ist definiert als das Verhältnis von Verdrängungsdicke zu Impulsverlustdicke:

\[H_{12} = \frac{\delta_1}{\delta_2} \]

Laminare Grenzschichten weisen einen Formfaktor von 2,6 für Blasius-Profile bis ungefähr 3,5 bei Ablösung auf. Die Werte für turbulente Grenzschichten liegen aufgrund des völligeren Geschwindigkeitsprofils niedriger, wobei für Profile ohne Druckgefälle (z. B. ebene Platte) der Formfaktor bei ca. 1,3 liegt. Ansonsten sind Werte bis 2,4 üblich. Für die in dieser Arbeit untersuchte Grenzschicht ergab sich ein Formfaktor von ca. 1,7. Die Grenzschicht ist also eindeutig turbulent.
2.1.4 Grenzschichtablösung

Zur Grenzschichtablösung kommt es in Gebieten mit stark positivem Druckgradienten, wo die kinetische Energie des Fluidteilchens nicht mehr ausreicht, um es durch diesen Bereich zu transportieren. Es kommt zum Stillstand des Teilchens und in weiterer Folge aufgrund des Druckanstieges zu einer Rückströmung desselben, siehe Bild 2.4.

\[\tau_w = \mu \frac{\partial u}{\partial y} \bigg|_{y=0} = 0 \]

Mit dieser Gleichung kann die Lage der Ablösung durch eine genaue Rechnung (Integration der Grenzschicht-Differentialgleichungen) ermittelt werden.

Unterschied zwischen laminarer und turbulenter Grenzschichtablösung

Das Turbulentwerden der Grenzschicht bewirkt, dass der Ablösepunkt nach hinten verschoben wird, was durch die erhöhte mitschleppende Wirkung der Außenschicht aufgrund der Mischbewegungen in der turbulenten Grenzschicht verursacht wird. Durch das Verschieben der Ablösung kommt es zu einer starken Verringerung des Widerstandes, was sich in einem abrupten Abfall des Reibungsbeiwertes \(C_w \) bemerkbar macht. Dieser Abfall ist umso markanter, je stumpfer die Rückseite des angeströmten Körpers ist.
2.2 Maßnahmen zur Verhinderung der Grenzschichtablösung

2.2.1 Maßnahmen zur aktiven Beeinflussung der Grenzschichtströmung (Active Flow Control)

Mitbewegen der Wand

Dies vermindert die Geschwindigkeitsdifferenz zwischen der Wand und der Außenströmung, ist technisch jedoch schwer zu realisieren, außer es besteht die Möglichkeit einen Teil der Oberfläche durch einen rotierenden Zylinder zu ersetzen, siehe Bild 2.5. Diese Methode wurde bereits bei Tagflügeln, in Diffusoren und auch an LKW-Anhängern erfolgreich getestet (siehe Gad-el-Hak, 2006).

Bild 2.5 – Einsatz von rotierenden Zylindern zur Verhinderung der Grenzschichtablösung am Beispiel eines Tragflügels und eines LKW-Anhängers (Gad-el-Hak, 2006)
Absaugung

Hierbei saugt man einen Teil des Fluids in der wandnahen Grenzschicht durch schmale Schlitze in der Oberfläche ab, wodurch sich die Krümmung des Geschwindigkeitsprofils an der Wand, und in weiterer Folge auch die Stabilität der Grenzschicht signifikant verändern. Zusätzlich verhindert die Absaugung ein Anwachsen der Grenzschichtdicke. Durch eine genügend starke Absaugung kann eine Ablösung sogar vollständig verhindert werden. In Bild 2.6 ist die Wirkung der Grenzschichtabsaugung in einem stark divergenten Kanal veranschaulicht. Erfolgt die Absaugung lediglich entlang der oberen Wand (b), so legt sich die Strömung auch nur auf dieser an. Saugt man jedoch an beiden Wänden die Grenzschichtströmung ab (c), so kommt es zu keiner Ablösung, und die Strömung füllt den Kanalquerschnitt vollständig aus (Schlichting; Gersten, 1997).

Einblasen

In diesem Fall erfährt die wandnahe Grenzschicht durch tangentiales Einblasen (wall jets) parallel zur Hauptströmungsrichtung eine Erhöhung der kinetischen Energie, womit sich die Geschwindigkeit in diesem Bereich erhöht, und sich die Gefahr der Ablösung verringert. Nach diesem Prinzip kann der Maximal-Auftrieb, z. B. eines Tragflügels, erheblich gesteigert werden. Bei Militärflugzeugen ist das tangentielle Einblasen, aufgrund seiner einfachen Realisierbarkeit, die bevorzugte Methode zur Kontrolle der Grenzschichtablösung (Gad-el-Hak, 2006).
2.2.2 Maßnahmen zur passiven Beeinflussung der Grenzschichtströmung (Passive Flow Control)

Bei der passiven Strömungsbeeinflussung ist, wie bereits erwähnt, keine Zuführung von externer Energie erforderlich, sondern diese kommt direkt aus der Strömung. Als Beispiel sollen hier nur die Wirbelgeneratoren erläutert werden, da sich diese Arbeit genau damit beschäftigt.

Wirbelgeneratoren (vortex generators)

Wirbelgeneratoren sind starre Strukturen, die durch ihre spezielle Geometrie Wirbel erzeugen, welche energiereiche Strömungssteilchen der Außenströmung in die wandnahe Grenzschichtströmung transportieren, wo sie Teilchen geringerer Bewegungsenergie ersetzen. Hierdurch wird dem Wachstum und der Neigung zur Ablösung der Grenzschicht entgegengewirkt (Hennecke, 2000).

2.3 Wirbelgeneratoren

![Bild 2.7 – Entstehung des Wirbels am Beispiel eines tragflügelähnlichen Wirbelgenerators (Hennecke, 2000)](image)
Weiters ist zwischen konventionellen Hochprofil-Wirbelgeneratoren \((\text{high-profile vortex generators } (h_{WG} \geq \delta))\) und Niedrigprofil-Wirbelgeneratoren \((\text{low-profile vortex generators } (h_{WG} < \delta))\) zu unterscheiden, vgl. Bild 2.9.

Bild 2.8 – Formen und Anordnungen passiver Wirbelgeneratoren (Lin, 2002)

Bild 2.9 – Vergleich konventioneller Hochprofil- mit Niedrigprofil-Wirbelgeneratoren

Hochprofil-Wirbelgeneratoren

Hochprofil-Wirbelgeneratoren liegen in der Größenordnung der Grenzschicht, d. h. sie sind gleich hoch wie diese oder ragen sogar darüber hinaus. Ihr Vorteil liegt im Vergleich zu den Niedrigprofil-Wirbelgeneratoren darin, dass sie stärkere Wirbel erzeugen, und somit die Grenzschicht länger zum Anliegen zwingen. Aufgrund ihrer Größe entstehen aber auch höhere Strömungsverluste. Sie kommen vor allem bei Tragflügeln, zur Erhöhung des Auftriebs bei Start- und Landevorgängen (Zivile Luftfahrt), sowie der Verbesserung der Manövrierfähigkeit und der Leistung bei Düsenjets (Militär), zur Anwendung. Sie werden aber auch an Flugzeugrümpfen verbaut, um den Lärmpegel in der Passagierkabine zu minimieren. Aufgrund der relativ hohen Druckverluste, die durch die Hochprofil-Wirbelgeneratoren entstehen, werden diese jedoch immer mehr von den Niedrigprofil-Wirbelgeneratoren ersetzt.

Niedrigprofil-Wirbelgeneratoren

Niedrigprofil-Wirbelgeneratoren liegen vollständig in der Grenzschicht und ihre Höhe beträgt meist zwischen 10 bis 50 % der Grenzschichtdicke. Durch ihre geringere Höhe sind die Effekte, die sie auf die Grenzschicht haben, zwar nicht so stark ausgeprägt wie bei Hochprofil-Wirbelgeneratoren, dafür fallen die von ihnen erzeugten Strömungsverluste aber auch geringer aus. Aus diesem Grund haben sie die Hochprofil-Wirbelgeneratoren in vielen Bereichen bereits ersetzt. Einige Einsatzgebiete sind etwa die Anbringung an Tragflügeln von Düsenjets für eine bessere Manövrierbarkeit derselben, sowie in Ansaugkanälen zu Strahl- oder Turboproptriebwerken. Im
Rahmen dieser Arbeit wird die mögliche zukünftige Anwendung von Niedrigradial-Wirbelgeneratoren, welche aufgrund ihrer Anordnung (siehe Bild 2.10) gegensinnig rotierende Wirbel erzeugen, in aggressiven, S-förmigen Zwischendiffusoren von Turbinen untersucht.

Bild 2.10 – Prinzip der Wirbelgeneratoren mit gegensinnig drehenden Wirbeln (a) aus Angele; Grewe, 2007, und Foto der tatsächlich verwendeten Wirbelgeneratoren (b)

2.4 Diffusoren

Ein Diffusor dient zur Umwandlung von kinetischer Energie in Druckenergie. Dies bewerkstelligt man durch eine stetige Querschnittserweiterung der durchströmten Fläche, wodurch sich die Geschwindigkeit des Strömungsmittels verringert und sich gleichzeitig der statische Druck erhöht. Der Totaldruck bleibt jedoch bis auf den hauptsächlich durch Reibung verursachten Druckverlust konstant, da weder Energie zu- noch abgeführt wird.

Bild 2.11 – Prinzip eines Diffusors

Der wichtigste Faktor für die Effektivität eines Diffusors ist das Verhältnis von Ein- zu Austrittsquerschnitt (area ratio) im Vergleich zu seiner Länge, was auch den Öffnungswinkel des Diffusors bestimmt. Je größer dieser Winkel ist, also je größer das Flächenverhältnis im Vergleich zur Länge, desto wahrscheinlicher ist es, dass es zum Ablösen der Strömung kommt, da das durch den Diffusor strömende Fluid gegen einen stark positiven Druckgradienten ankämpfen muss. Einen Zusammenhang zwischen der Leistung eines Diffusors mit rechteckigem Querschnitt und seiner Geometrie, sprich dem area ratio und dem Verhältnis der Länge zur Eintrittshöhe haben Reneau, Johnston und Kline in einem Diagramm festgehalten. Der in dieser Arbeit untersuchte 2D-Kanal ist in diesem Diagramm in Bild 2.12 als roter Punkt eingezeichnet.

Allein aufgrund seines Flächenverhältnisses und dem Verhältnis der Diffusorlänge zur Eintrittsquerschnitt (area ratio) im Vergleich zu seiner Länge, der untersuchte Kanal sehr nahe am optimalen Auslegungsbereich, wo bei einem vorgeschriebenen dimensionslosen Verhältnis N/W1 das area ratio einen maximalen Druckrückgewinn erzeugt (C_p^*). (Anm.: Die Linie C_p^{**} bedeutet einen maximalen Druckrückgewinn bei vorgeschriebenem dimensionslosem area ratio). Durch die starke S-Krümmung der Kanalwände und der anfänglichen Verringerung des Querschnitts wird jedoch eine Ablösung erzwungen.
Die Effektivität eines realen Diffusors kann durch das Verhältnis der tatsächlich erreichten Druckrückgewinnung C_p zu der im Idealfall erreichbaren Druckrückgewinnung $C_{p,i}$ ausgedrückt werden. Beim Idealfall wird eine ungestörte, eindimensionale Strömung bei gleichem Massenstrom wie im Realfall angenommen.

$$\varepsilon_D = \frac{C_p}{C_{p,i}}$$
mit:
$$C_{p,i} = 1 - \frac{1}{AR^2}$$

Die Anwendungsgebiete von Diffusoren sind vielfältig und erstrecken sich von der Flugzeugtechnik, über den Motorsport bis hin zur Verwendung in der Klimatechnik bei Ventilatoren.
Im Bereich der Flugzeugtechnik kommen sie als Einläufe von Strahl- und Turbopropflugzeugen sowie, unter anderem als Zwischendiffusoren (Übergangskanäle) zur Verbindung von Hoch- und Niederdruckstufe von Triebwerksturbinen und -verdichtern, zum Einsatz.
2.4.1 Zwischendiffusor (Übergangskanal)

Ein Zwischendiffusor dient zur Verbindung von Hoch- und Niederdruckstufe der Turbine bzw. des Verdichters mehrwelliger Düsentriebwerke, wie z. B. im in Bild 2.13 abgebildeten, kommerziellen Zweistrom-Strahltriebwerk PW6000, welches im z. B. Airbus A318 zum Einsatz kommt. Es ist das erste Triebwerk der zivilen Luftfahrt, das eine einstufige transsonische Hochdruckturbine besitzt und es entspricht dem Stand der Technik. Die im Rahmen des EU-Projekts AIDA untersuchten Übergangskanäle sind an den Zwischendiffusor dieses Triebwerks angelehnt (gleiche Machzahl bei 0,6; ähnliches Radienverhältnis). Sie sind jedoch um 20 % (C3, C4) bzw. 40 % (C5) kürzer in ihrer axialen Ausdehnung.

2.4.2 Strömungscharakteristik hochaggressiver Zwischendiffusoren

Die Strömung in Übergangskanälen ist eine sehr komplexe transiente, dreidimensionale, stark umlenkende, turbulente Strömung. Hinzu kommt die strömungsverzögernde Wirkung aufgrund der Querschnittserweiterung von Hoch- auf Niederdruckstufe, welche die Grenzschichtströmung zusätzlich destabilisiert, und somit die Gefahr der Strömungsablösung an der Wand stark erhöht.

Strömungsverlauf im Kanal

Aufgrund der starken Krümmung des Kanalprofils und der damit einhergehenden Zentrifugalkraft kommt es zur Ausbildung eines positiven Druckgradienten in Richtung der inneren Kanalwand, siehe Bild 2.15. An dieser kommt es unter Berücksichtigung der Kontinuität und der Energieerhaltung durch die Erhöhung des statischen Drucks gleichzeitig zu einer Verringerung der Strömungsgeschwindigkeit, was dort zu einem Anwachsen der Grenzschichtdicke führt, und in weiterer Folge ein Ablösen der Strömung nach sich ziehen kann. An der Außenwand herrscht durch den Druckgradienten ein niedrigerer statischer Druck. Die Strömung erfährt hier eine Beschleunigung, was eine Verringerung der Grenzschichtdicke mit sich bringt. Bei zu starker Krümmung der Kanalwand, in Verbindung mit der Querschnittserweiterung des Kanals und der daraus resultierenden Strömungsverzögerung, kann die Strömung der Wand schließlich nicht mehr folgen, und es kommt zur Ablösung derselben.

Eine Ablösung im Zwischendiffusor einer Turbine verursacht Verluste und asymmetrische Verkrümmungen der Strömung, die zu Stabilitätsproblemen in anschließenden Komponenten führen können.
Bei der zweiten Krümmung ist derselbe Effekt zu beobachten, jedoch in nicht so großem Maße wie bei der ersten Biegung. Aus diesem Grund ist die Gefahr einer Ablösung an der inneren Kanalwand in diesem Bereich geringer.
3 Versuchseinrichtung

3.1 Verdichteranlage

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SC20</td>
<td>27500</td>
<td>9,0</td>
<td>2,9</td>
<td>15780</td>
<td>2978</td>
<td>1450</td>
</tr>
<tr>
<td>SC14</td>
<td>15500</td>
<td>5,1</td>
<td>2,9</td>
<td>20930</td>
<td>996-1482</td>
<td>900</td>
</tr>
<tr>
<td>E1 + E2</td>
<td>8000</td>
<td>2,6</td>
<td>3,1</td>
<td>3730</td>
<td>1485</td>
<td>400</td>
</tr>
</tbody>
</table>

Für die im Rahmen dieser Arbeit durchgeführten Untersuchungen wurde die Verdichteranlage in der Fahrweise 2 betrieben (d.h. Turboverdichter SC14 mit Kühlern 2), siehe Bild 3.2.
3.2 Transsonischer Windkanal

Diese Versuchseinrichtung dient der Simulation einer stationären, möglichst zweidimensionalen Strömung durch verschiedene Versuchseinbauten, meist Schaufelgitter, und erlaubt alle Arten der optischen und laseroptischen Messmethoden der Strömungsmesstechnik.

Für PIV- und LDA-Messungen können Seedingpartikel mittels einer Seedinglanze ca. 500 mm stromaufwärts von der Kaskade eingebracht werden.
Die Luftversorgung des Prüfstandes erfolgt durch die kontinuierlich arbeitende Verdichteranlage.
3.2.1 Versuchsaufbau

3.2.1.1 Auslegung des Übergangskanals für die Kaskade

![Bild 3.4 - Vergleich der Originalinnenkontur des Ringkanals mit der neu ausgelegten Innenkontur des rechteckigen Kanals (Koordinaten von Versuchsturbine)](image)

Die Simulation der Strömung durch den Kanal von Herrn Dipl.-Ing. Andreas Marn mithilfe der Software Fluent ergab, dass im hinteren Bereich des Kanals die Strömungsverzögerung aufgrund

3.2.1.2 Aufbau des Versuchseinsatzes

Versuchseinsatz

Strömungsführende Konturen

Die Grundlage der Kanal- sowie der Einlaufkonturen bildeten 50 mm starke Hartschaumplatten, wobei jeweils zwei Stück zusammengeklebt wurden, um die gewünschte Breite der Konturen von 100 mm (vorgegeben durch die Geometrie des Windkanals) zu erhalten. Das Ausschneiden erfolgte wie in Bild 3.5 abgebildet, mit einem Widerstandsdraht, wobei dieser über eine computergesteuerte Unabhängig voneinander steuerbare CNC-Achsen Gewichte zum Beschweren der Hartschaumplatte Widerstandsdraht Hartschaumplatte Unabhängig voneinander steuerbare CNC-Achsen Bild 3.5 – Zuschneiden der inneren Kanalkontur
Versuchseinrichtung

Traversierung mit vier unabhängig voneinander verfahrbaren Achsen (von Herrn Dr. Dipl.-Ing. Oliver Schennach entwickelt) bewegt wurde, was einen exakten Zuschnitt der Konturen ermöglichte.

Bild 3.6 – Bekleben einer Kanalkontur mit Sperrholzplatte (a) und Einkleben der Gewindebolzen (b)

Bild 3.7 – Aufbau des Versuchseinsatzes im Windkanal

Fertigung der Wirbelgeneratoren

Die Fertigung der Wirbelgeneratoren erfolgte aus einem Kupferblech mit 0,1 mm Stärke, 100 mm Länge und 15 mm Breite. Mithilfe eines vorgefertigten „Stempels“ wurde die Form der Generatoren in das Blech geprägt, und diese später mit Superkleber an der vorgesehenen Position
Versuchseinrichtung des Kanals befestigt. Bild 3.8 zeigt die vorgesehene Anordnung sowie die ungefähre Geometrie (tatsächliche Wirbelgeneratoren haben parallele Wände und sind schmäler) der Wirbelgeneratoren (a) sowie die aus Kupferblech hergestellten Wirbelgeneratoren (b). Diese Herstellungsart hat sich daraus ergeben, dass die Kupferstreifen mit den Wirbelgeneratoren in der Versuchsturbine auf den stählernen Übergangskanal nachträglich einfach aufzubringen sind. Da diese Variante der Fertigung nicht genau exakt der vorgegebenen Geometrie (parallele Seitenwände) der Wirbelgeneratoren entspricht (z.B. Wirbelgeneratoren etwas breiter und leicht unterschiedliche Höhen durch händische Prägung), zeigten die Tests derselben im transsonischen Windkanal gleichzeitig, ob diese abgewandelte Geometrie trotzdem eine erkennbare Wirkung auf die Ablösung zeigt.

Bild 3.8 – Geometrie und Anordnung der Wirbelgeneratoren (a) bzw. Foto der verwendeten Wirbelgeneratoren (b)

3.2.2 Versuchsbedingungen

Nach dem Hochfahren der Verdichteranlage erfolgte das Einstellen des Betriebspunktes. Um die Strömungszustände in der Versuchsturbine möglichst ähnlich nachzubilden, wurde als Kriterium die flächengemittelte Machzahl im Eintrittsquerschnitt des Kanals herangezogen. Als zweite Einstellgröße diente die Totaltemperatur, welche ca. 100 mm stromaufwärts vom Kanaleintritt gemessen wurde. Die Totaltemperatur erreichte aufgrund des geringen Massenstroms von 1,2 kg/s nicht dieselbe Temperatur wie in der Versuchsturbine (59 °C) sondern blieb bei maximal 43 °C stehen. Tabelle 3.1 zeigt eine Gegenüberstellung der Zustände in der Versuchsturbine und in der Kaskade.

<p>| Tabelle 3.1 – Gegenüberstellung der gemittelten Einstellgrößen in Versuchsturbine und Kaskade |
|---------------------------------|-----------------|----------------|----------------|</p>
<table>
<thead>
<tr>
<th>Machzahl</th>
<th>Turbine</th>
<th>Kaskade</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totaltemperatur</td>
<td>332 (59)</td>
<td>317 (44)</td>
<td>K (°C)</td>
</tr>
<tr>
<td>Massenstrom pro Flächeneinheit</td>
<td>182.7</td>
<td>193</td>
<td>kg/(s·m²)</td>
</tr>
<tr>
<td>Red. Massenstrom pro Flächeneinheit</td>
<td>3029</td>
<td>2780</td>
<td>kg K²/(s·bar·m²)</td>
</tr>
</tbody>
</table>

\[Ma = \sqrt{2 \cdot \left(\frac{p_1}{p} \right)^{\kappa-1} - \kappa - 1} \]
Um die Strömung nicht zu beeinflussen mussten der Totaldruckbaum sowie die Totaltemperatursonde im Bereich des Kanaleintritts vor den Messungen des Strömungsverlaufs entfernt werden. Für das Einstellen des Betriebspunktes diente daher eine fiktive Machzahl, welche aus einem gemessenen Totaldruck an der Schaufel (Messstelle 22) und einem statischen Druck kurz vor der Schaufel (Messstelle 46) bestimmt wurde, siehe Tabelle 3.2.

<table>
<thead>
<tr>
<th>Statischer Druck an Messtelle 46</th>
<th>p</th>
<th>0,9 bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totaldruck an Messtelle 22 (T4)</td>
<td>p_t</td>
<td>1,23 bar</td>
</tr>
<tr>
<td>Fiktive Machzahl</td>
<td>Ma</td>
<td>0,68 -</td>
</tr>
<tr>
<td>Massenstrom</td>
<td>m</td>
<td>1,2 kg/s</td>
</tr>
<tr>
<td>Totaltemperatur am Kanaleintritt</td>
<td>T_t</td>
<td>317 K 43 °C</td>
</tr>
</tbody>
</table>
4 Messtechnik

4.1 Druck- und Temperaturmessung

4.1.1 Messdatenerfassung

Für die Messdatenerfassung stand ein Schaltschrank mit sechs PSI-Modulen der Firma Pressure Systems (Modell: Netscanner 9016) mit je 16 Anschlüssen für Druckmessung sowie Field Points (Modell Nr.: FP-TC-120) der Firma National Instruments für die Temperaturmessung zur Verfügung. Die PSI-Module waren über einen Netzwerk-Switch mit dem Mess-Computer verbunden. Die Anzeige sowie die Aufnahme der Messwerte erfolgten mit einem Programm (FourAxis_PTP_Vers.5_1.vi), das ursprünglich für die Messung mit Fünf-Loch-Sonden erstellt worden war.

4.1.2 Totaltemperaturmessung

Bild 4.1 - Temperatursonde im eingebauten Zustand

4.1.3 Druckmessung

Die Messung des statischen Drucks erfolgte über Druckmessbohrungen (d = 0,5 mm) entlang der Kanalwand, die Messung des Totaldrucks mithilfe von Pitot-Rohren (D = 0,8 mm, d = 0,5 mm), die in Totaldruckbäumen zusammengefasst waren, um eine Messung über die gesamte Kanalhöhe in einer Ebene zu ermöglichen. Die Positionen der Druckmessstellen sind in Bild 4.2 abgebildet, bzw. Tabelle A.1 und Tabelle A.2 im Anhang zu entnehmen.
Zur Vergleichbarkeit der Messungen ist der Druckbeiwert C_p eingeführt worden:

$$C_p = \frac{p - p_{\text{ref}}}{p_{t,\text{ref}} - p_{\text{ref}}}$$

Mit:

p....Druck an der jeweiligen Messstelle
p_{ref}...Statischer Referenzdruck (Messstelle 46 am Kanalausritt)
$p_{t,\text{ref}}$...Referenztotaldruck (Eintritt: Messstelle 9; Austritt: Messstelle 22)

Die Positionen der Referenzmessstellen sind in Bild 4.2 eingezeichnet.
Messfehler

Die Messgenauigkeit der PSI-Module beträgt 0,05% des Endwerts. Das ergibt bei einem Endwert von 5 PSI (334,74 mbar) 0,7 mbar. Der Messfehler, der durch Falschanströmung der Pitot-Rohre verursacht wird, ist vernachlässigbar, da die Falschanströmung, zumindest im Kanaleintritt, sehr gering ist. Bis zu einem Anströmwinkel von ±8° bei einem üblichen Durchmesserverhältnis von D/d = 0,6 kann nämlich mit einer korrekten Gesamtdruckmessung gerechnet werden, siehe Nitsche; Brunn, 2006. Bei den statischen Druckmessbohrungen kann aufgrund von Fertigungsungenauigkeiten die Messung des statischen Wanddruckes beeinflusst werden, da diese nicht immer exakt senkrecht zur Kanalwand eingebracht werden konnten.

4.1.3.1 Statistische Druckmessung

Der statische Druck entlang der Kanalwände wurde mit Druckmessbohrungen mit einem Durchmesser von 0,5 mm in der Mitte des Kanals sowie 15 mm rechts davon (in Strömungsrichtung gesehen) gemessen. An der inneren Kanalwand befanden sich lediglich am Eintrittsquerschnitt, 68 mm davor und knapp vor den Schaufeln Messstellen, da diese Kontur für die Messungen kaum von Bedeutung war. An der äußeren Kanalwand waren ebenfalls an diesen Positionen Messstellen vorgesehen, jedoch kamen 10 mm Stromabwärts vom Kanaleintritt in einem Abstand von 5 mm 19 weitere Druckmessstellen hinzu, um den statischen Druckverlauf in diesem Bereich besser auflösen zu können, siehe Bild 4.2.

4.1.3.2 Totaldruckmessung

Die Messung des Totaldruckes erfolgte über Pitot-Rohre mit einem Außendurchmesser von 0,8 mm und einem Innendurchmesser von 0,5 mm, die in Totaldruckbäumen in der Mitte des Kanaleintritts sowie an der Vorderkante der mittleren Schaufel (Kanalaustritt) zusammengefasst waren, siehe Bild 4.2. Die Totaldruckbäume ermöglichten die Bestimmung des Totaldruckverlaufs über die Kanalhöhe in der Mitte des Kanals.
Da der Totaldruckbaum im Eintrittsquerschnitt des Kanals die Strömungsverhältnisse im zu untersuchenden Bereich stark beeinflusste, wurde dieser nach Erreichen des stationären Betriebspunkt sowie der anschließenden Aufnahme der Messwerte des Totaldrucks aus dem Versuchseinsatz entfernt.

Die genauen Positionen der Messstellen sind in Bild 4.3 sowie in Bild 4.4 zu sehen, wobei die Nummerierung der Messstellen von unten (Außenkontur = T1) nach oben (Innenkontur = T12 bzw. T6) erfolgte. In Bild 4.3 ist zu sehen, dass die Pitot-Rohre des Totaldruckbaums im Kanaleintritt in der Nähe der Kanalwände einen Abstand von 1,6 mm (Mittelpunkt zu Mittelpunkt) zueinander haben. Das dient der genauen Auflösung des Druckverlaufs in der Grenzschicht.

4.2 Ölanstrich

Der Ölanstrich besteht aus einem Gemisch aus handelsüblichem Motoröl und Titanoxid (TiO₂), welches auf die zu untersuchende Oberfläche aufgebracht wird. Durch Zumischen von Schlagschnurfarbe besteht die Möglichkeit verschiedenfarbige Anstriche herzustellen, um Wechselwirkungen zwischen mehreren Komponenten sichtbar zu machen.

Beim Herstellen des Anstriches ist darauf zu achten, dass die Masse eine möglichst homogene Konsistenz ohne Klümpchen aufweist und außerdem nicht zu flüssig ist, da diese sonst während der Messung größtenteils oder sogar komplett abgetragen wird und keine vernünftige Aussage über den Strömungsverlauf möglich ist. Sie sollte aber auch nicht zu zäh sein, da sonst die auftretenden Wandschubspannungs- und Druckgradienten nicht ausreichen um den Anstrich zu verändern.
4.3 Teilchenfolgevermögen

Die optischen Messmethoden Laser-Doppler-Anemometer (LDA) und Particle-Image-Velocimeter (PIV), die in den folgenden Kapiteln beschrieben werden, benötigen zur Bestimmung der Geschwindigkeit der betrachteten Strömung die Zumischung kleiner Partikel, um indirekt durch deren Geschwindigkeitsmessung auf jene der Strömung schließen zu können. Es ist daher äußerst wichtig, dass die Bewegung dieser Teilchen repräsentativ für die Strömung ist. Dies ist der Fall, wenn der Durchmesser möglichst klein ist. Auf der anderen Seite sollte dieser aber auch nicht zu gering sein, da die Streulichtleistung des Lasers mit dem Quadrat des Teilchendurchmessers anwächst.

Wirken auf ein Teilchen keine äußeren Kräfte wie z. B. Gewicht oder Auftrieb, dann ist die Beschleunigungskraft gleich der Widerstandskraft, die durch die Geschwindigkeitsdifferenz zwischen Fluid und Teilchen verursacht wird. Analog zum Stokes'schen Reibungsgesetz für laminare Strömung kann folgende Differentialgleichung für ein Teilchen nach einer plötzlichen Änderung der Geschwindigkeit \(\Delta u \) angeschrieben werden (Tropea, 2002)

\[
d\frac{du_p(t)}{dt} = \frac{1}{\tau}(u_p(t) - u_f)
\]

mit \(\tau = \frac{D_p^2 \rho_p}{18 \cdot \nu \cdot \rho_f} \)

Die Relaxationszeit \(\tau \) entspricht jener Zeitspanne, die ein Teilchen benötigt, um nach einem Geschwindigkeitsunterschied des Fluids bis auf den \(1/e \)-Teil der Geschwindigkeitsdifferenz zwischen Fluid und Teilchen zu verzögern bzw. zu beschleunigen.

Für die Messungen im Rahmen dieser Arbeit wurde DEHS (Di-Ethyl-Hexyl-Sebacat), ein Silikonöl mit einer Dichte von \(\rho_p = 912 \text{ kg/m}^3 \), als Seedingmaterial verwendet. Zur Erzeugung von kleinen Öltröpfchen kam ein Seedinggenerator AGF 5.0D der Fa. Palas Aerosoltechnologie in Karlsruhe mit einem nominellen Teilchendurchmesser im Sprühnebel von \(D_p = 0,7 \mu \text{m} \) zur Anwendung. Für die Strömung kann eine dynamische Zähigkeit \(\mu = \nu \cdot \rho_p = 2 \cdot 10^{-5} \text{ kg/ms} \) eingesetzt werden. Damit beträgt die Relaxationszeit \(\tau = 1,24 \mu \text{s} \).

Für die Berechnung der Endgeschwindigkeit des Teilchens gilt, dass es sich ausgehend von der Ruhelage nach folgendem Gesetz exponentiell seiner endgültigen Geschwindigkeit nähert:

\[
u_p(t) = u_E \left(1 - e^{-\frac{t}{\tau}} \right)
\]

wobei \(u_E = \tau \left(1 - \frac{\rho_f}{\rho_p} \right) g \)

\[u_p(t)\] Teilchengeschwindigkeit zur Zeit \(t \)
\[u_E\] Teilchenendgeschwindigkeit
\[\rho_p\] Dichte des Teilchens
\[\rho_f\] Dichte des Fluids
\[\nu\] kinematische Zähigkeit des Fluids

Die Funktion \(e^{\frac{t}{\tau}} \) ist in Bild 4.5 für unterschiedliche Teilchendurchmesser dargestellt.

Das dynamische Verhalten von Tracerpartikel, insbesondere für periodische, harmonische Oszillationen des Fluids, kann am besten durch eine Übertragungsfunktion \(G(s) \) mathematisch beschrieben werden:

\[
G(s) = \frac{1}{1 + \tau \cdot s}
\]

mit \(s = i \cdot 2\pi f \)

\(s \) Frequenzkonstante in der Übertragungsfunktion
Bild 4.5 - Sprungantwort für unterschiedliche Teilchendurchmesser

In Bild 4.5 ist die Sprungantwort für unterschiedliche Teilchendurchmesser dargestellt. In diesem Diagramm ist der nominelle Teilchendurchmesser von 0,7 µm der bei den Messungen im Rahmen dieser Arbeit erzeugten Seedingpartikel eingekreist (rot eingekreist). Bei einem gewünschten Teilchenfolgevermögen von 95 % können damit Frequenzen bis maximal 44 kHz gemessen werden.

Bei sehr hohen Frequenzen wirken die Seeding-Partikel also wie ein Tief-Pass-Filter.

Bild 4.6 - Teilchenfolgevermögen für unterschiedliche Durchmesser
4.4 Particle-Image-Velocimetrie

4.4.1 Prinzip des Messverfahrens

Die Particle-Image-Velocimetrie ist ein Verfahren zur berührungslosen Messung von Geschwindigkeitsfeldern in der Strömungsmechanik.

Im Rahmen dieser Arbeit wurde die digitale PIV zur Geschwindigkeitsmessung in einer Ebene angewandt. Die der Strömung zugeführten Tracerpartikel werden mithilfe eines gepulsten Laser-Lichtschnitts in einem kurzen zeitlichen Abstand Δt (3-5 ns) zweimal hintereinander sehr kurz belichtet (ca. 1 µs). Das von den Teilchen gestreute Licht wird mit einer digitalen Kamera, die normal auf den Lichtschnitt ausgerichtet ist, aufgenommen und in zwei getrennten Bildern (frames) abgespeichert. Zur Auswertung der gemessenen Daten werden die beiden Bilder in so genannte interrogation areas unterteilt, die sich teilweise überlappen (meist 50 %). Die Auswertesoftware verarbeitet diese mittels Kreuzkorrelation und als Resultat erhält man für jede interrogation area einen lokalen Verschiebungsvektor, der die Verschiebung der enthaltenen Teilchen beschreibt. Liegt eine Vorzugsrichtung der Strömung vor, können die interrogation areas des zweiten Bildes mit einem konstanten "image shift" um einige Pixel in horizontaler und vertikaler Richtung verschoben werden. Damit wird gewährleistet, dass möglichst dieselben Teilchen in beiden Bereichen enthalten sind und nur sehr wenige den Bereich verlassen. Durch Multiplikation mit einem aus den geometrischen Abbildungsverhältnissen berechneten Skalierungsfaktor kann die tatsächliche Verschiebung der Teilchen bestimmt werden und mit der Zeit Δt ergibt sich die momentane Strömungsgeschwindigkeit der Teilchen. Als Ergebnis erhält man Vektorfelder der Geschwindigkeit des betrachteten Bereichs.

Bild 4.7 - Prinzipielle Funktion der digitalen PIV

4.4.2 Beschreibung des verwendeten PIV-Systems

Die Lichtschnittoptik besteht aus einer sphärischen Linse, einer zylindrischen Linse und einem Prisma, siehe Bild 4.9. Die sphärische Linse (600 mm Brennweite und 42 mm Durchmesser) fokussiert den Laserstrahl auf ungefähr 2 mm Durchmesser im Messbereich. Die zylindrische Linse (-10 mm Brennweite) erzeugt eine Strahldivergenz von ungefähr 10°. Das Prisma (8 mm Seitenlänge) dreht den Laserlichtschnitt um 90°. Eine zusätzliche, ebene Glasplatte vor dem Prisma schützt die optischen Elemente vor Fremdkörpern.

Für die Aufzeichnung der Bilder wurde eine DANTEC 80C60 HiSense Kamera verwendet, welche mit F-Mount-Adaptoren sowie einem AF Micro-NIKKOR 60/2.8 Objektiv ausgestattet ist. Da die beiden Teilchenbilder in zwei getrennten Einzelaufnahmen (frames) abgespeichert werden, betreibt man die Kameras im „Double-Frame-Mode“ mit einem minimalen Zeitabstand von 0,2 μs. Der Kamerasensor ist ein so genannter „Progressive-Scan-Interline CCD-Chip“ mit einer Größe von 1280 × 1024 Pixel.

Ein Messcomputer (Microsoft Windows XP Professional SP2, DANTEC FlowManager 4.60.28), der über eine Ethernet-Leitung mit dem PIV-Prozessor verbunden ist, übernimmt die Steuerung sowie die Speicherung der aufgezeichneten Messdaten.

4.4.3 Datenauswertung

Die Datenauswertung erfolgte wie bereits erwähnt mit einer Kreuz-Korrelation der beiden aufgenommenen Bilder, über eine Fast-Fourier-Transformation (FFT) mit dem Software Paket FlowManager 4.60.28.

Validierung

Üblicherweise treten bei dieser Form der Auswertung trotzdem Fehlvektoren aufgrund von Fehlkorrelationen auf (z. B.: in Bereichen wo kein oder zu wenig Seeding vorhanden war). Durch geeignete Validierungskriterien können auch diese ausgeschieden werden. Für die Datenvalidierung gibt es drei Arten, die einzeln oder kombiniert angewandt werden können.

Peak-Validierung:
Durch Vorgabe eines Grenzwertes für das Höhenverhältnis der ersten beiden Korrelationspeaks werden Korrelationen mit keinem eindeutigen Korrelationspeak von vornherein ausgeschlossen.

Range-Validierung:
Durch die Festlegung von Verschiebungsgrenzen können physikalisch sinnlose Vektoren ausgeschieden werden.

Moving-Average-Validierung:
Beim so genannten Moving-Average-Algorithmus wird ein Vektor mit seinen nächsten Nachbarvektoren verglichen. Dabei werden zuerst Mittelwert und Standardabweichung der Nachbarvektoren gebildet. Übersteigt der zu untersuchende Vektor einen vorgegebenen Akzeptanzwert, wird er ausgeschlossen.
4.5 Laser-Doppler-Anemometrie (LDA)

4.5.1 Prinzip des Messverfahrens

![Bild 4.10 - LDA-Messvolumen – räumliches Interferenzfeld (Tropea, 2002)](image)

Der Streifenabstand Δx (zwischen zwei Intensitätsmaxima) ist abhängig von der Wellenlänge λ und dem Schnittwinkel Θ der Laserstrahlen, siehe Bild 4.11:

$$\Delta x = \frac{\lambda}{2 \sin \frac{\Theta}{2}}$$

![Bild 4.11 - Interferenzstreifenmuster zweier überlageter Laserstrahlen](image)
Die Ausdehnung des Messvolumens kann aus der Brennweite der verwendeten Frontlinse \(f \), dem Strahlabstand \(D \) und dem Strahlradius \(r_0 \) berechnet werden, siehe Bild 4.12.

\[
2r_1 = \frac{4 \, f \lambda}{r \, 2r_0}
\]

Fokussierter Laserstrahldurchmesser

Bild 4.12 – Strahlgeometrie und Messvolumen (Tropea, 2002)

Abmessungen des Messvolumens:

\[
x_m = \frac{2r_1}{\cos \Theta}
\]

\[
y_m = 2r_1
\]

\[
z_m = \frac{2r_1}{\sin \Theta}
\]

Passiert nun ein zuvor der Strömung zugeführtes Tracerpartikel das Messvolumen mit der Geschwindigkeit \(v_p \), entsteht durch Streuung der lokalen Lichtintensität ein periodisches Aufblitzen mit der Doppler-Frequenz \(f_D \), siehe Bild 4.13. Diese Frequenz ist ein direktes Maß für die Geschwindigkeit des Teilchens quer zu den Interferenzebenen:

\[
f_D = \frac{v_p}{\Delta x}
\]

Bild 4.13 – Durchtritt eines Tracerpartikels durch das Messvolumen (Tropea, 2002)

$$f = f_S + f_D = f_S + 2 \cdot v_x \cdot \frac{\sin \Theta}{2}$$

4.5.2 Auswertung der Messdaten

Die Weiterverarbeitung erfolgt üblicherweise durch eine statistische Auswertung der Messergebnisse, wofür eine genügend große Anzahl von Messwerten erforderlich ist. Daraus können:

- der Mittelwert \(\bar{u}_i \) (in Richtung \(i \))
- die Varianz \(u_i^2 \) sowie
- die Standardabweichung \(\sqrt{u_i^2} \)

der Geschwindigkeit bestimmt werden. Die Varianz (oder Streuung) stellt ein Maß für die Breite der gemessenen Geschwindigkeitsverteilung dar, die Standardabweichung ist die Wurzel daraus und beschreibt die mittlere Schwankungsgeschwindigkeit in der Strömung.

Fehlerabschätzung

Die Unsicherheit, die sich durch die statistische Auswertung einer begrenzten Anzahl von Messwerten ergibt, wurde nach dem Verfahren der Konfidenzintervalle (siehe Sachs, 2006) abgeschätzt. Dieses Verfahren geht von einer Normalverteilung von unabhängigen Messwerten aus (\(N \) Werte, Varianz \(\sigma^2 \) und Mittelwert \(\bar{u} \)), und besagt, dass mit einer Wahrscheinlichkeit von z.B. 95 % (für \(1-\alpha \)) der Mittelwert und die Varianz innerhalb eines bestimmten Fehlerbereichs liegen.

\[
\pm \frac{t_{N-1,\alpha} \sigma_{u_i}}{\sqrt{N}} \quad \text{Fehlerbereich des Mittelwertes}
\]

\[
+ \sqrt{\frac{\sigma_{u_i}^2 \frac{N-1}{\chi^2_{N-1,1-\alpha/2}}}{N-1}} - \sqrt{\frac{\sigma_{u_i}^2 \frac{N-1}{\chi^2_{N-1,\alpha/2}}}{N-1}} \quad \text{Fehlerbereich der Standardabweichung}
\]

Wobei \(t_{N-1,\alpha} \) hierbei die Student t-Verteilung und \(\chi^2_{N-1,1-\alpha/2} \) bzw. \(\chi^2_{N-1,\alpha/2} \) die Chi-Quadrat-Verteilung repräsentieren.
4.5.3 Beschreibung des verwendeten LDA-Systems

Bild 4.16 – Vereinfachter optischer Aufbau eines Zweistrahl-Faser-LDA (Tropea, 2002)

In Tabelle 4.1 sind die geometrischen Größen der Laserstrahlen und des Messvolumens zusammengefasst:
<table>
<thead>
<tr>
<th>Messgröße</th>
<th>BSA1</th>
<th>BSA2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strahlradius r_0</td>
<td>1,1</td>
<td>1,1</td>
</tr>
<tr>
<td>Brennweite f</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>Wellenlänge λ</td>
<td>514,5</td>
<td>488</td>
</tr>
<tr>
<td>Strahlabstand D</td>
<td>38</td>
<td>38</td>
</tr>
<tr>
<td>Messvolumen x_m</td>
<td>0,119</td>
<td>0,113</td>
</tr>
<tr>
<td>Messvolumen y_m</td>
<td>0,119</td>
<td>0,113</td>
</tr>
<tr>
<td>Messvolumen z_m</td>
<td>2,510</td>
<td>2,381</td>
</tr>
<tr>
<td>Streifenabstand Δx</td>
<td>5,422</td>
<td>5,143</td>
</tr>
<tr>
<td>Streifenzahl N_{tr}</td>
<td>21,9</td>
<td>21,9</td>
</tr>
</tbody>
</table>
4.6 Laservibrometer

4.6.1 Prinzip des Messverfahrens

Das Laservibrometer arbeitet nach dem Grundprinzip der Interferometrie, d. h. es nutzt die Fähigkeit des Laserlichts mit sich selbst zu interferieren (also je nach relativer Phasenlage zweier Lichtstrahlen zueinander sich gegenseitig zu verstärken oder auszulöschen). Die Summenintensität zweier interferierender Lichtwellen setzt sich aus den Einzelintensitäten \((I_1, I_2)\) sowie deren Phasendifferenz \(\Delta \varphi\) zusammen.

\[
I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cdot \cos(\Delta \varphi)
\]

Für die Bestimmung der Phasendifferenz ist die Verknüpfung der Dichte \(\rho\) mit dem Brechungsindex \(n\) notwendig, welche über die Gladstone-Dale-Beziehung \((n - 1 = G \cdot \rho)\) erfolgt. Für den zeitlichen Verlauf der Phasendifferenz ergibt sich (Herleitung siehe Hampel, 2005):

\[
\Delta \varphi(t) = G \frac{2\pi}{\lambda_0} \int_0^z \rho(z, t) dz - \varphi_0
\]

wobei in der Bezugsphase \(\varphi_0\) alle zeitlich unveränderlichen Anteile, sowie das Integral über den Referenzstrahl enthalten sind.

![Prinzip des Laservibrometers](image)

4.6.2 Beschreibung des verwendeten Systems

Eine Besonderheit dieses Systems stellt der Einsatz einer Bragg-Zelle dar, welche über den Dopplereffekt eine leichte Frequenzverschiebung (40 Mz) der reflektierten Referenzwelle verursacht. Dies führt am Detektor auch ohne Dichteschwankungen des betrachteten Mediums zu einer Schwebung der beiden Wellenfronten, was sich im elektrischen Signal des Detektors als so genannte Trägerfrequenz (= Schwebungsfrequenz) bemerkbar macht. Diese Trägerfrequenz entspricht der in der Bragg-Zelle erzeugten Frequenzverschiebung.

Der aus dem Laservibrometer austretende Messstrahl wurde mithilfe einer Sammellinse (Brennweite: 20 mm) fokussiert, wodurch sich der Durchmesser des Laserstrahls auf ca. 1 mm reduzierte, und sich damit auch der Messbereich verkleinerte. Ein leichtes Schrägstellen der Linse verhinderte, dass am Fenster reflektierte Teilstrahlen des Lasers zurück in das Vibrometer gelangten. Diese Maßnahme verhinderte eine Verfälschung des Messsignals durch Mitmessung der Schwingungen der Scheiben bzw. des gesamten Windkanals.

Der Messstrahl wurde an einem metallbeschichteten Spiegel reflektiert, welcher auf eine ca. 5 kg schwere Masse geklebt war, wodurch sich dessen Trägheit erhöhte, und sich seine Eigenschwingungen auf einen Bereich unter 500 Hz beschränkten. Die Befestigung der Masse samt Spiegel erfolgte auf einem Kameralinseobjektiv um ein genaues Positionieren des Spiegels zu ermöglichen und somit eine größtmögliche Reflexion des Messstrahles zurück ins Laservibrometer zu erreichen.
4.7 Schlierenvisualisierung

4.7.1 Prinzip

Bild 4.18 – Prinzip der Schlierenvisualisierung

4.7.2 Beschreibung der verwendeten Vier-Farben-Schlierentechnik

Im Rahmen dieser Arbeit kam das Verfahren der Vier-Farben-Schlierentechnik zum Einsatz, welches die gleichzeitige Darstellung der Dichtegradienten der vier unterschiedlichen Raumrichtungen (oben, unten, links, rechts) in verschiedenen Farben ermöglicht. Hierbei kommen eine spezielle Schlierenblende und ein Vier-Schneiden-Filter zur Anwendung. Die in Form eines Rechtecks angeordneten Schlitze der Blende sind mit farbigen, transparenten Gelatinefolien abgedeckt. Der Vier-Schneiden-Filter hat die Aufgabe, die Darstellung der Dichtegradienten entlang der vier Richtungen durch verstärken oder abschwächen einer Farbe zu ermöglichen. Dieser kann mit verschiebbaren Rasierklingen in zwei Ebenen realisiert werden, wie es auch bei den durchgeführten Messungen der Fall war. Die Rasierklingen müssen so positioniert sein, dass wenn die Versuchsanlage nicht in Betrieb ist, also keine Luft durch den Versuchsbeugung strömt (d. h. keine bzw. nur geringe Dichteschwankungen), der betrachtete Bereich nicht belichtet ist, da es zu keiner Ablenkung des Lichts kommt. Durch das Anzünden einer Kerze, die vor den zu
untersuchenden Kanalbereich platziert wird, überprüft man anschließend durch das Stören der Flamme (z. B. hinein blasen), ob die Dichtegradienten in alle Richtungen (also alle vier Farben) erkennbar sind. Fehlt eine Farbe, oder ist diese zu intensiv vorhanden, so muss die entsprechende Klinge nachjustiert werden.

In Bild 4.21 sind die Anordnung der Farbfolien sowie die Abbildung der Farben auf der Blende in Blickrichtung des Beobachters (von der Kamera aus), wie sie für die Versuchsanordnung in dieser Arbeit verwendet wurde, dargestellt.

Tabelle 4.2 zeigt den Zusammenhang der auf der Kamera abgebildeten Farben mit den Dichtegradienten.

Tabelle 4.2 - Zusammenhang zwischen abgebildeter Farbe und Dichtegradient

<table>
<thead>
<tr>
<th>Farbe</th>
<th>Steigende Dichte nach</th>
</tr>
</thead>
<tbody>
<tr>
<td>grün</td>
<td>oben</td>
</tr>
<tr>
<td>rot</td>
<td>unten</td>
</tr>
<tr>
<td>blau</td>
<td>links</td>
</tr>
<tr>
<td>gelb</td>
<td>rechts</td>
</tr>
</tbody>
</table>
5 Messungen und Ergebnisse

Die im Rahmen dieser Arbeit durchgeführten Messungen wurden bei einer mittleren Machzahl am Kanaleintritt von 0,6 sowie einer Totaltemperatur von ca. 317 K also 44 °C realisiert (vgl. Kapitel 3.2.2).

Die ersten Messungen dienten der Untersuchung des Strömungsverlaufs im S-förmigen Kanal ohne Einsatz der Wirbelgeneratoren, um den Beginn der Ablösung an der Außenkontur sowie deren Ausdehnung zu bestimmen. Die Lage des Ablösepunktes wurde anschließend herangezogen, um die Position der Wirbelgeneratoren festzulegen. Deren gewählte Position lag schließlich 10 mm stromaufwärts vom Ablösebeginn bzw. 10 mm stromabwärts vom Kanaleintritt (Vorderkante der Wirbelgeneratoren), siehe Bild 5.1. Nach dem Befestigen der Wirbelgeneratoren an der äußeren Kanalwand erfolgten weitere Messungen, um zu untersuchen ob die Generatoren tatsächlich einen Einfluss auf die Ablösung haben, und sollte dies der Fall sein, festzustellen wie groß dieser ist.

Auf der beigelegten CD befinden sind einige ergänzende Messergebnisse, wie die Videos der Ölanstriche sowie der Schlierenvisualisierung.

5.1 Druckmessung

Die Messungen wurden an verschiedenen Messstagen mit variierenden Umgebungszuständen aufgenommen. Da diese einen relativ großen Einfluss auf die Absolutwerte der Druckverläufe haben, ist der Druckbeiwert C_p eingeführt worden, um die Messungen untereinander vergleichbar zu machen. Die gewählten Referenzwerte, sowie die Definition des Druckbeiwerts sind Kapitel 4.1.3 zu entnehmen.

Bild 5.1 zeigt die wichtigsten Referenzpunkte bzw. Ebenen sowie die Position der Wirbelgeneratoren zum besseren Verständnis der gezeigten Ergebnisse.
5.1.1 Totaldruckverteilung

Die Messung des Totaldrucks erfolgte am Eintritt sowie am Austritt (Schaufelvorderkante) des Kanals, jeweils in der Mitte und über die gesamte Kanalhöhe, zur Bestimmung der Zu- und Abströmverhältnisse sowie der Veränderungen der Druckverläufe durch den Einsatz der Wirbelgeneratoren.

Messergebnisse

In Bild 5.2 ist der Verlauf des Totaldrucks über der relativen Kanalhöhe, beginnend bei der äußeren Kanalkontur, dargestellt. Die senkrechte schwarze Linie zeigt den bei der Messung herrschenden Umgebungsdruck $p_u=976 \text{ mbar}$ im Versuchsraum (Turbolabor). Der Totaldruckverlauf in Bild 5.2 stellt am besten die im Kanaleintritt herrschenden Bedingungen dar, und wurde daher als repräsentative Kurve für alle Messungen gewählt (Referenz für eventuell folgende numerische Simulationen).

Der Totaldruck steigt im unteren Zehntel der Kanalhöhe (entspricht 6 mm Höhe), also in der Nähe der äußeren Kanalwand, rasch auf den Maximalwert von ca. 1250 mbar an, und bleibt über einen großen Bereich der Kanalhöhe nahezu konstant.

Da im Bereich der inneren Kanalwand die Abstände zwischen den Messstellen relativ groß waren, ist hier der Totaldruckverlauf nicht sehr fein aufgelöst. Dadurch entsteht der Eindruck, dass der Totaldruck im oberen Kanalbereich früher abfällt als im unteren. Wahrscheinlicher ist jedoch, dass der Druckverlauf ähnlich dem an der äußeren Kanalwand ist.

Für die weiteren Messungen im Rahmen dieser Arbeit war nur der Totaldruck an der äußeren Kanalwand von Bedeutung. Daher ist dieser in Bild 5.3 nochmals genauer über die Höhe aufgelöst, und zusätzlich der Druckverlauf für die Messung mit Wirbelgeneratoren eingezeichnet, um die, wenn auch geringen, Unterschiede zwischen den beiden Messungen aufzuzeigen.

Bild 5.2 - Totaldruckverteilung über die relative Kanalhöhe in Prozent im Eintrittsquerschnitt (beginnend bei der äußeren Kanalwand)

![Diagramm Totaldruckverläufe und Druckbeiwerte im Kanaleintritt](image1)

Bild 5.3 – Vergleich der Totaldruckverläufe sowie der Druckbeiwerte im Kanaleintritt ohne und mit Wirbelgeneratoren im Bereich der Grenzschichtströmung an der äußeren Kanalwand

Messungen und Ergebnisse

5.1.2 Statischer Druckverlauf

Messung ohne Wirbelgeneratoren

In Bild 5.5 unten ist der Querschnittsverlauf mit der Eintrittsfläche als Referenz ebenfalls über der äußeren Kanalkontur dargestellt. Im Diagramm für den Druckbeiwert in Bild 5.5 ist zu erkennen, dass sich der statische Druck, trotz der Querschnittserweiterung des Kanals, zwischen dem ersten und zweiten Messpunkt verringert. Grund dafür sind vor allem Sekundäreffekte an der inneren Kanalwand. Außerdem wächst die Grenzschicht an allen vier Wänden in Strömungsrichtung an. Diese Effekte führen zu einer Verengung des tatsächlichen Strömungsquerschnitts und in weiterer Folge zu einer Beschleunigung der Strömung, was, unter Berücksichtigung der Kontinuität und der Energieerhaltung, eine Verringerung des statischen Drucks mit sich bringt.
Die hinzukommende konvexe Krümmung der Außenkontur (Beginn: 10 mm vor Kanaleintritt) beschleunigt die Strömung zusätzlich, wodurch der statische Druck noch stärker absinkt. Nach durchlaufen eines Minimums ca. 15 mm stromabwärts vom Beginn der Krümmung steigt der statische Druck wieder rapide an (genaue Position des Minimums nicht exakt bestimmbbar, da nur alle 5 mm eine Messstelle vorhanden war). Es kommt hier also zu einer starken Verzögerung der Strömung, bevor diese tatsächlich ablöst, vgl. roter vertikaler Balken in Bild 5.5. An der zweiten statischen Druckmessreihe ist erst 5 mm weiter stromabwärts ein wieder ansteigen des Drucks erkennbar.

Bild 5.5 – Statischer Druckverlauf sowie Querschnittsverlauf des Kanals bezogen auf die Eintrittsfläche entlang der Außenkontur ohne Wirbelgeneratoren

Weiter stromabwärts überwiegt schließlich wieder die strömungsverzögernde Wirkung des Kanals, und der statische Druck beginnt wieder anzusteigen.
Messung mit Wirbelgeneratoren

Da der Kupferblechstreifen, aus dem die Wirbelgeneratoren bestehen, eine Breite von ca. 15 mm aufweist, konnten in dem Abschnitt, wo dieser aufgeklebt war, keine Messwerte aufgenommen werden, siehe Bild 5.6. Es kann daher keine Aussage darüber getroffen werden, wie der Druckverlauf und vor allem das Druckminimum in diesem Gebiet aussieht. Durch den geringeren Druckabfall vor den Wirbelgeneratoren lässt sich aber vermuten, dass das Minimum nicht so stark ausgeprägt ist, wie bei der Messung ohne Wirbelgeneratoren.

Bis zum Beginn der konvexen Kanalkrümmung an der äußeren Kanalkontur entwickelt sich der Druckbeiwert fast identisch zur ersten Messung. Das heißt, die Strömung wird wieder durch die anwachsenden Grenzschichten an den vier Wänden, sowie den Sekundäreffekten an der Innenkontur leicht beschleunigt, wodurch der statische Druck abfällt. Wo die konvexe Krümmung der äußeren Kanalwand beginnt, sinkt der der statische Druck jedoch nicht so schnell ab, wie das...
bei der Messung ohne Wirbelgeneratoren der Fall war, da die Generatoren stromaufwärts einen leichten Aufstau erzeugen, der die Strömung in diesem Bereich etwas verzögert, was bereits bei der Totaldruckmessung zu erkennen war, siehe Bild 5.3. Das führt zu einer Erhöhung der potentiellen Energie und somit des statischen Drucks in diesem Bereich.

Im Gebiet hinter den Wirbelgeneratoren ist, wie bei der Messung ohne diese (vgl. Bild 5.5), wieder ein starker, wenngleich auch etwas weniger steiler, Anstieg, des statischen Drucks zu verzeichnen. Auch hier bildet sich wieder ein Plateau aus, das jedoch eine geringere Ausdehnung in Strömungsrichtung aufweist, und bei dem der statische Druck konstant bleibt. Daraus lässt sich ableiten, dass die Wirbelgeneratoren die Ablösung weiter stromabwärts verschoben.

Die verzögernde Wirkung der Querschnittserweiterung des Canals beginnt sich ebenfalls früher bemerkbar zu machen, und somit fällt der Druckbeiwert am Kanalaustritt (kurz vor der Schaufelvorderkante) im Vergleich zur Messung ohne Wirbelgeneratoren um einen Wert von ca. 0,1 höher aus. Das lässt darauf schließen, dass die Ausdehnung der Ablösung sich ebenfalls verringert hat.

Bild 5.7 – Vergleich der Druckbeiwertverläufe mit und ohne Wirbelgeneratoren (WG)

Bild 5.7 verdeutlicht noch einmal die Unterschiede der Druckverläufe und der damit verbundenen Verringerung der Ablösungseffekte durch den direkten Vergleich der Messergebnisse. Es ist deutlich zu erkennen, dass sich der Beginn des Plateaus, und somit auch die Ablösung, durch den Einsatz der Wirbelgeneratoren stromabwärts verschoben haben. Noch auffallender ist die Verringerung der Ausdehnung des Plateaus, dessen Länge sich von 45 auf 20 mm reduziert hat. Außerdem kommt es mit Wirbelgeneratoren nicht mehr zur Ausbildung eines negativen Druckgradienten, da, wie bereits erwähnt, die Querschnittserweiterung des Canals aufgrund des verkleinerten Ablösegebiets ebenfalls geringer ausfällt.

Durch die Verkürzung des Plateaus ist mit Wirbelgeneratoren ein höherer Druckrückgewinn als ohne diese möglich. Der Druckrückgewinnungsfaktor vergrößert sich um 0,1. Um die Verbesserung zu verdeutlichen wurde der ideale Druckrückgewinnungsfaktor für einen geraden Diffusor mit rechteckigem Querschnitt nach Sovran und Klomp, 1996 bestimmt (siehe Kapitel 2.4). Es ergab sich ein Wert von 0,39. Dieser Wert wurde zur Bestimmung des „Diffusorwirkungsgrads“ herangezogen, wobei sich für den Fall ohne Wirbelgeneratoren ein Wert von 38 % und für den Fall mit Wirbelgeneratoren ein Wert von 60 % ergab. Es ist also eine enorme Verbesserung durch die Wirbelgeneratoren zu verzeichnen. Allerdings sind diese Werte nur als eine Abschätzung zu sehen, da für die Berechnung lediglich die Messwerte an der Außenkontur herangezogen werden konnten, und nicht der Mittelwert über die gesamte Kanalhöhe zur Verfügung stand.
5.2 Ölanstrich

Der Ölanstrich diente der ungefähren Bestimmung des Ablösebeginns der Grenzschichtströmung und der Größe des Rückströmgebiets sowie des prinzipiellen Verlaufs der Strömung an der Außenkontur, um unter anderem auch für die späteren Messungen mit Laservibrometer und Laser Doppler Anemometer den genau zu untersuchenden Bereich festlegen zu können. Zu diesem Zweck wurde ein weißer Ölanstrich auf die zu untersuchende äußere Kanalwand aufgebracht. Zusätzlich erhielt eine Seitenwand einen rosa Anstrich, um auch Strömungseinflüsse (Druck- und Wandschubspannungsgradienten) quer zur Hauptströmungsrichtung sichtbar zu machen.

5.2.1 Messung ohne Wirbelgeneratoren

Bild 5.8– Ölanstrich ohne Wirbelgeneratoren mit Beginn der Ablösung (roter Balken) und dem prinzipiellen Strömungsverlauf an der äußeren Kanalwand (Pfeile)

Bild 5.8 zeigt das Resultat des Ölanstrichs an der äußeren Kanalwand für die Messung ohne den Einsatz der Wirbelgeneratoren. Auf der beigefügten CD befindet sich ein kurzes Video (Oelanstrich.mpg), dessen erster Teil (Dauer: 35 Sekunden) den oben abgebildeten Ölanstrich zeigt.

Die weißen Striche am linken Rand der Kanalwand sind in 10 mm Schritten entlang der Kanalwand eingezeichnet, und dienen der besseren Orientierung.

Im Bereich vor dem Eintritt in den S-förmigen Kanal ist ein gleichmäßiger Abtrag des Ölanstrichs klar erkennbar, was auf eine einheitliche Bewegung in Strömungsrichtung zurückzuführen ist. Ungefähr 20 mm stromabwärts vom Kanaleintritt bleibt das Motoröl-Titanoxid-Gemisch im mittleren Bereich des Kanals, auf einer Breite von ca. 80 mm fast zur Gänze erhalten. Grund dafür sind die geringen Wandschubspannungen in diesem Areal. Die Anhäufung des Ölanstrichs weist darauf hin, dass an dieser Stelle die zu erwartende Strömungsablösung auftritt. Dieses Ergebnis
bestätigen die Messungen mit dem Laser-Doppler-Anemometer (auf die in Kapitel 5.4.2 näher eingegangen wird). Dort ist eine erste Rückströmung bei 22,5 mm stromabwärts vom Kanaleintritt (Messlinie 9) zu erkennen. Am Rand zeigt sich keine vermehrte Anhäufung des Ölanstrichs, da die Sekundäreffekte (v. a. Kanalwirbel), hervorgerufen durch die seitliche Begrenzung des Kanals (erkennbar in Bild 5.8 durch Eintrag von rosafarbigem Ölanstrich von der Seitenwand auf die äußere Kanalkontur), eine Strömungsablösung in diesem Areal verhindern.

Im Bereich stromabwärts der Ablösestelle kommt es zur Ausbildung eines stark ausgeprägten Rückströmgebietes mit zwei gegenläufig drehenden, symmetrischen Wirbeln (Bewegungsrichtung siehe Bild 5.8).

Unterhalb der Wirbel bewegt sich die Strömung, ausgehend von den beiden Seitenwänden, stromabwärts, in einem Abströmwinkel von ca. 20° zur Wand. Dieser Winkel ergibt sich durch die aufgrund der Umlenkung der Strömung im Kanal auftretenden Kanalwirbel. Weiter zur Mitte des Kanals hin kriegen sich die Stromlinien immer mehr nach oben, bis schließlich eine Bewegung entgegen der Strömungsrichtung einsetzt, die in der Mitte des Kanals dann genau entgegengesetzt der Hauptströmungsrichtung verläuft. Diese Bewegung entgegen der Strömungsrichtung bleibt bis zur Schaufelvorderkante bzw. dem Kanalauslass, erhalten. Es kommt in Kanalmitte also nicht zu einem Wiederauflagen der Strömung. Die Ablösung bleibt hier erhalten.

5.2.2 Messung mit Wirbelgeneratoren

Nachdem alle Messungen ohne Wirbelgeneratoren abgeschlossen waren, wurden die Wirbelgeneratoren an der vorher festgelegten Position 10 mm stromabwärts vom Kanaleintritt an-, und ein weiterer Ölanstrich aufgebracht.

Bild 5.9 zeigt das Resultat des Ölanstrichs mit Wirbelgeneratoren. Der zweite Teil des auf der beigelegten CD gespeicherten Videos (Ölanstrich.mpg, ab Sekunde 38) zeigt die Entstehung der von den Wirbelgeneratoren erzeugten Wirbel beim Einsetzen der Strömung durch den Windkanal sowie die entwickelte Strömung wie sie in Bild 5.9 abgebildet ist.

Im Vergleich zur Messung ohne Wirbelgeneratoren ist in Bild 5.9 auf den ersten Blick ein signifikanter Unterschied erkennbar. Sehr auffällig ist, dass durch die von den Wirbelgeneratoren erzeugten gegensinnig drehenden Wirbel kein einheitlicher Beginn der Ablösung mehr ersichtlich ist, dieser sich im Mittel aber um etwa 10 mm weiter stromabwärts verschoben hat. Dieses Ergebnis wird wieder durch die Messungen mit dem Laser-Doppler-Anemometer bestätigt, wobei hier in der vermessenen Ebene zwischen den Druckmessbohrungen eine dauerhafte Rückströmung bei 37,5 mm stromabwärts vom Kanaleintritt (Messlinie 13a) erkennbar ist, aber es bereits vorher zu einer geringen Rückströmung bei ca. 30 mm stromabwärts vom Kanaleintritt kommt, siehe Bild 5.17 bzw. Bild 5.19.

Es ist auch zu erkennen, dass der Ölfilm im Vergleich zur Messung ohne Wirbelgeneratoren deutlich dünner ist, d. h. die vorherrschenden Wandschubspannungen sind größer geworden. An der Seitenwand ist ebenfalls ein deutlich stärkerer Abtrag des Ölanstrichs in Strömungsrichtung erkennbar, was wie bei den Messungen ohne Wirbelgeneratoren auf die Sekundäreffekte durch die seitliche Begrenzung zurückzuführen ist.

In Kanalmitte reicht ein stark ausgeprägter Ölfilm von der Schaufelvorderkante bis zur ursprünglichen Ablösestelle bei der Messung ohne Wirbelgeneratoren. Das heißt aber nicht, dass diese hier die Ablösung nicht beeinflussen. In diesem Bereich folgt der von den Generatoren erzeugte Wirbel der Wandkontur so gut, dass er über sein Wirbelzentrum, wie bei einem Tornado, das durch die Ablösung zurückströmende Titanoxid-Motoröl-Gemisch weiter stromaufwärts saugt. Das erweckt den Eindruck, als bliebe der Ablösebeginn gleich, was jedoch nicht der Fall ist. Wie bei den vorherigen Messungen haben sich zwei, zur Kanalmitte symmetrische, Wirbel ausgebildet, welche aber etwas weiter stromabwärts liegen, und auch etwas kleiner ausgefallen sind.

Außerdem ist der Bereich der Rückströmung viel schmäler geworden. Trotzdem besteht in Kanalmitte weiterhin eine Rückströmung gegen der Hauptströmungsrichtung, welche bis hinunter zum Kanalauslass erkennbar ist.
Die Ergebnisse der Druckmessungen sowie der Ölanstriche lieferten wichtige Informationen für die weiteren Messverfahren, insbesondere für LDA und Laservibrometer, da der für die Messungen interessante Bereich (Ablösebeginn mit Rückströmgebiet) klar vordefiniert werden konnte.
5.3 Particle-Image-Velocimetrie

Die Particle-Image-Velocimetrie kam zum Einsatz um die mittlere Ausdehnung der Ablösung normal zur Kanalwand (bzw. parallel zur Hauptströmungsrichtung) zu bestimmen.

5.3.1 Messablauf

Bild 5.10 – PIV-Aufbau mit Lichtschnitt
Nach der ersten Messung wurde der Maßstab (field of view factor) zwischen den aufgenommenen Bildern und der realen Geometrie festgestellt, um die tatsächlich auftretenden Geschwindigkeiten bestimmen zu können. Es ergab sich ein Wert von 12,333. Der field of view Faktor muss unbedingt vor der Auswertung der Messergebnisse auf den richtigen Wert geändert werden, da die Änderung im Nachhinein nicht mehr möglich ist.

Für die Korrelation der 300 aufgenommenen Bilder wurden interrogation areas mit einer Größe von 32x32 Pixel und einer Überlappung von 50 % gewählt. Die anschließende Validierung erfolgte mit einem peak height ratio (Länge eines Geschwindigkeitspfeils im Vergleich zum benachbarten) von 1,2. Der zulässige Geschwindigkeitsbereich war zwischen 0 und 280 m/s festgelegt. Nachdem die einzelnen Bilder ausgewertet waren, wurden diese gemittelt, um einen Eindruck über die mittlere Größe der Ablösung zu erhalten.

5.3.2 Messung ohne Wirbelgeneratoren

Bild 5.11 zeigt das gemittelte und validierte Ergebnis der PIV-Messung aus 300 Einzelaufnahmen (Messebene 7,5 mm rechts von der Kanalmitte, in Strömungsrichtung gesehen) ohne Wirbelgeneratoren. Als Maßstab ist ein Geschwindigkeitspfeil mit einer Größe von 250 m/s eingezeichnet. Im oberen Bereich des Kanals sind nur wenige bis gar keine Tracerpartikel vorhanden, da die Seedingleitung die Teilchen lediglich über eine Höhe von 100 mm im Verbindungsrohr vor dem Windkanal einbringt. Durch die Querschnittsverengung am Einlauf des Windkanals verringert sich der Bereich, in dem Seedmaterial vorhanden ist, weiter. Außerdem ist der Lichtschnitt im oberen Bereich, wie bereits erwähnt, durch die Innenwand des Kanals abgeschnitten.

In der rechten unteren Ecke führte ein Sekundärwirbel zur raschen Verschmutzung der Scheibe durch das Seedmaterial, weshalb auch hier keine verwertbaren Teilchenverschiebungen bestimmt werden konnten.

Bild 5.11 – PIV-Ergebnis ohne Wirbelgeneratoren (Mittelung von 300 Einzelaufnahmen)
Zur Verdeutlichung der Ausdehnung des Rückströmbereichs ist dieser rot unterlegt. Zum Vergleich ist der aus Ölanstrich und LDA-Messung bestimmte Ablösebeginn als roter Balken eingezeichnet. Es zeigt sich, dass auch beim PIV-Ergebnis der Beginn der Rückströmung und somit der Ablösung in diesem Bereich liegt. Der erkennbare Rückströmbereich reicht bis zum Kanalaustritt, d. h. die Strömung legt sich im Kanal nicht wieder an. Die Ablösung erreicht beim Kanalaustritt eine Höhe von ca. 25 mm (normal zur Kanalwand betrachtet), was zur Folge hat, dass der tatsächliche Strömungsquerschnitt des Kanals verengt wird, und sich die Diffusorwirkung des Kanals verringert (wie bei der statischen Druckmessung bereits festgestellt werden konnte, durch Ausbildung eines Plateaus, siehe Bild 5.5).

5.3.3 Messung mit Wirbelgeneratoren

Bild 5.12 zeigt das gemittelte und validierte Ergebnis der PIV-Messung aus 300 Einzelaufnahmen (Messebene 7,5 mm rechts von der Mitte, in Strömungsrichtung gesehen) mit Wirbelgeneratoren. Als Maßstab ist wieder ein Geschwindigkeitspfeil mit einer Größe von 250 m/s eingezeichnet.

Es fällt sofort auf, dass der Rückströmbereich der Ablösung im Vergleich zur Messung ohne Wirbelgeneratoren viel kleiner ausfällt (rot markiert). Außerdem ist der Bereich der Rückströmung viel geringer als bei der Messung ohne Wirbelgeneratoren, und es werden bei weitem nicht dieselben Rückströmgeschwindigkeiten erreicht.

Um die Rückströmung besser erkennen zu können, wurde der Bereich der Ablösung in Bild 5.13 nochmals dargestellt, wobei die Geschwindigkeitspfeile um einen Faktor 2,5 vergrößert wurden. Als Maßstab ist hier ein Geschwindigkeitspfeil mit einer Länge von 50 m/s eingezeichnet. Durch die Vergrößerung der Geschwindigkeitspfeile ist die ungefähre Ausdehnung der Rückströmung, und in weiterer Folge der Ablösung, besser erkennbar.
Im Ablösegebiet gibt es einige Geschwindigkeitspfeile, die nicht so recht ins Bild passen. Dabei handelt es sich wahrscheinlich um Fehlvektoren, die trotz der Validierung erhalten geblieben sind. Im grün markierten Bereich in Bild 5.12 ist keine exakte Aussage über die Strömungsrichtung möglich, da wieder sehr viele Fehlvektoren auftreten, die teilweise wieder durch die Verschmutzung der Scheibe verursacht wurden. Es ist aber auf jeden Fall keine Rückströmung mehr erkennbar, sondern eher eine geringe Bewegung in Strömungsrichtung. Vergleicht man dieses Ergebnis mit der Ölanstrichaufnahme (Bild 5.9) für diese Konfiguration, erkennt man, dass hier tatsächlich eine Bewegung in Strömungsrichtung, aber auch normal zur Lichtschnittebene, erkennbar ist. Die Geschwindigkeitskomponente normal zur Lichtschnittebene konnte nicht bestimmt werden, da dafür eine Stereo-PIV-Messung notwendig wäre. Da diese Komponente allerdings nicht von so großer Bedeutung war, wurde von diesem Verfahren abgesehen.

Mithilfe der Messungen mit dem Particle Image Velocimeter konnte gezeigt werden, dass sich die Wirbelgeneratoren auch auf die Erstreckung der Strömungsablösung über die Kanalhöhe relativ stark auswirken, und es hat den Anschein, dass die Strömung, zumindest in der betrachteten Ebene, noch vor dem Verlassen des Kanals wieder zum Anliegen gebracht werden kann. Auch die maximale Ausdehnung der Ablösung normal zur Kanalwand hat sich im Vergleich zur Messung ohne Wirbelgeneratoren um mehr als die Hälfte auf 10 mm reduziert.

Bild 5.13 – Detailabbildung des Ablösebereichs mit 2,5-fach vergrößerten Geschwindigkeitsvektoren
5.4 Laser-Doppler-Anemometrie

5.4.1 Messablauf

Vor dem Beginn der Messungen musste der Laser eine gewisse Zeit (ca. 2 Stunden) warmlaufen, bis die Laserleistung nicht mehr variierte, sondern konstant bei 400 mW lag. Anschließend erfolgte die Justierung der Einkoppeloptik so, dass beide Teilstrahlen des jeweiligen Strahlenpaares in etwa über die gleiche Leistung verfügten (maximal vertretbares Leistungsverhältnis 5 : 4).

Schließlich wurde das Messvolumen auf den vorgesehenen Nullpunkt der Traversierung eingerichtet. Die Koordinaten der gewünschten Messpunkte wurden in das Software-Programm, das sowohl die Traversierung als auch das LDA-System steuert (BSA Flow Software 1.2), eingetragen.

Der Nullpunkt wurde, wie in Bild 5.14 abgebildet, in y-Richtung auf Höhe des Kanaleintritts und in z-Richtung 30 mm unter der äußeren Kanalwand festgelegt. In x-Richtung lag der Nullpunkt an der Außenwand der Scheibe, so konnte die Mitte des Messvolumens exakt auf den Nullpunkt ausgerichtet werden. Die Messebene war mittig zwischen den statischen Druckmessbohrungen gewählt (x = 67,5 mm), um in derselben Ebene wie das PIV-System zu messen, und somit die Ergebnisse dieser Messmethoden vergleichbar zu machen. Ausgehend vom Nullpunkt wurde der unterste Messpunkt der ersten Messlinie angesteuert, und die Messung gestartet. Die Software steuerte selbständig die Messung entlang einer Linie inklusive dem Verfahren der Traversiereinrichtung zum jeweiligen Messpunkt. An den einzelnen Messpunkten wurde für jedes registrierte Seedingpartikel dessen Geschwindigkeit, die Ankunftszeit (AT) und die Zeit, die es brauchte, um durch das Messvolumen zu gelangen (TT) von der BSA Flow Software aufgezeichnet. Das System war so eingestellt, dass pro Messpunkt 10 000 bursts gemessen wurden, bzw. beendete die Software die Messung bei zu geringer Datenrate nach 30 Sekunden und bewegte den Messkopf bzw. das Messvolumen mithilfe der Traversierung zum nächsten Messpunkt.

Nachdem eine Linie fertig gemessen war, wurde das Messvolumen zum ersten Punkt der nächsten Messlinie verfahren. Anschließend erfolgte die händische Einstellung des Neigungswinkels des LDA-Kopfs durch drehen desselben, damit die Geschwindigkeitskomponenten tangential (BSA1) und normal zur Kanalwand (BSA2) gemessen werden konnten. Die Justierung des Messkopfes auf den Neigungswinkel erfolgte so, dass das Strahlenpaar für die Messung der Geschwindigkeit in Strömungsrichtung tangential zur Kanalkontur eingerichtet wurde, d. h. die beiden Teilstrahlen in der Nullposition die Außenkontur tangierten. Beim Einstellen des Neigungswinkels kam zusätzlich die Überprüfung des Abstands des Messvolumens von der Oberfläche hinzu (da sich durch die Temperaturänderung im Betrieb der gesamte Windkanal mit dem Versuchsobjekt veränderte).

Die letzte Messlinie (Nr. 19) war nicht mehr senkrecht zur Kanalwand ausgerichtet, da diese weiter oben sonst in die Schaufel hinein geragt wäre, und die Hauptströmung ohnehin nicht parallel zu Außenwand verlief. Die Neigung des Messkopfs wurde aber trotzdem tangential zur Kanalwand ausgerichtet, um die Richtung der Geschwindigkeitskomponenten beizubehalten.
Die positive Richtung der Geschwindigkeitskomponenten ist in Bild 5.14 exemplarisch für zwei Messlinien (1 und 16) eingezeichnet. Zur Geschwindigkeit normal zur Kanalwand ist noch anzumerken, dass diese erst ab einem Abstand von ca. 3 mm von der Wand gemessen werden konnte, da bis dorthin der untere Teilstrahl für die Bestimmung dieser Komponente abgeschnitten war. Der Fehler des Mittelwerts belief sich außerhalb des Ablösebereichs bei der Geschwindigkeitskomponente u tangential zur Kanalwand (bzw. in Strömungsrichtung) und auch bei der Geschwindigkeitskomponente v normal zur Kanalwand auf unter ± 0,5 m/s.

Da der, mit dem verwendeten LDA-System, messbare Geschwindigkeitsbereich um einen festgelegten Mittelwert immer auf ca. 110 m/s nach oben und 110 m/s nach unten beschränkt war,
Messungen und Ergebnisse

musste während der Messung einer Linie, die einen Bereich mit Rückströmung aufwies, der Mittelwert umgestellt werden, da im unteren Bereich negative Geschwindigkeiten bis -70 m/s auftraten, und im Vergleich dazu es im oberen Teil der Messlinie zu Geschwindigkeiten von über 250 m/s kam. Nur durch die Verstellung des Mittelwerts war es also möglich, die tatsächlich auftretende Geschwindigkeit zu bestimmen. Diese Tatsache machte es erforderlich, Messergebnisse mit verschiedenen Einstellungen (Mittelwerten des Messbereichs) zu verbinden, um vollständige Geschwindigkeitsprofile zu erhalten. Durch dieses willkürlich Verbinden der Messlinien treten gewisse Unsicherheitsfaktoren, vor allem bei der Bestimmung der ungefähren Ausdehnung der Ablösung, auf, die durch die Abstände der Messpunkte von bis zu 2,5 mm noch verstärkt werden.

Bild 5.15 – Histogramm eines Messpunktes in der gesunden Außenströmung mit eindeutiger Geschwindigkeitsspitze (a) bzw. mit unsymmetrischer Geschwindigkeitsverteilung eines Messpunktes (im Bereich der fluktuierenden Ablösung) aufgrund der abgeschnittenen zweiten Geschwindigkeitsspitze, bei dem der Wert der Geschwindigkeit (hier: für die gesunde Strömung) direkt aus dem Diagramm bestimmt wurde (b)

5.4.2 Messergebnisse ohne und mit Wirbelgeneratoren

Zur Veranschaulichung des gemessenen Strömungsverlaufs wurde die Geschwindigkeitskomponente u (tangential zur äußeren Kanalwand) entlang der Kanalkontur aufgetragen, siehe Bild 5.16 und Bild 5.17.

bestimmte Ablösebeginn ohne bzw. mit Wirbelgeneratoren als roter bzw. orangefarbiger senkrechter Balken eingezeichnet.

Bei der Messung ohne Wirbelgeneratoren (Bild 5.16) ist ein erstes Rückströmen bei Messlinie 9 (22,5 mm stromabwärts vom Kanaleintritt entlang der Kanalwand) erkennbar, das heißt die Ablösung ist hier bereits vorhanden. Der Ablösebeginn liegt daher wahrscheinlich zwischen Messlinie 8 und 9 (vgl. Bild 5.16), was sehr gut mit dem geschätzten Ablösebeginn aus dem Ölanstrich von etwa 20 mm stromabwärts vom Kanaleintritt übereinstimmt. Auch die ungefähre Ausdehnung der Ablösung in Kanalhöhe ist allein durch die Betrachtung der Geschwindigkeitskomponente tangential zur äußeren Kanalwand klar erkennbar.

Bei Messlinie 19 ergaben sich im wandnahen Bereich bis in eine Höhe von ca. 23 mm keine verwertbaren Messergebnisse mehr, da hier sehr hohe Geschwindigkeitsschwankungen auftraten (vgl. Bild 5.24: Standardabweichung teilweise über 200 m/s), was auf eine hohe Instabilität der Ablösung in diesem Gebiet hinweist. Wie bei den PIV-Messungen bereits festgestellt wurde, hat sich hier ein Wirbel ausgebildet, der die Strömungsturbulenz in diesem Bereich zusätzlich erhöht.

Bild 5.16 – Geschwindigkeitsprofile der Komponente u ohne Wirbelgeneratoren (Maßstab für Geschwindigkeitsprofil: 1 mm im Bild in Originalgröße entspricht 25 m/s)

Betrachtet man nun das aus den Messungen mit Wirbelgeneratoren erhaltene Bild 5.17, so fällt wie bei den PIV-Ergebnissen sofort auf, dass sich die Ausdehnung der Ablösung erheblich verringert hat. Im Gegensatz zur Messung ohne Wirbelgeneratoren ist die Position des Ablösebeginns wie beim Ölanstrich nicht so eindeutig festzulegen. Es ist im Bereich der Messlinie 12 (30 mm stromabwärts vom Kanaleintritt entlang der Kanalkontur) zwar ein erstes Rückströmen erkennbar, doch dazwischen bewegt sich das Fluid bis zur Messlinie 13a (ca. 37 mm stromabwärts vom Kanaleintritt entlang der Kanalkontur) wieder eindeutig in Strömungsrichtung. Diese Erscheinung kommt wahrscheinlich durch das Schwanken des Ablösebeginns in Strömungsrichtung oder durch das Fluktuieren eines von den Wirbelgeneratoren erzeugten Wirbels (insbesondere dessen Wirbelkerns) zustande.

Bei den in Bild 5.17 eingekreisten Bereichen der Geschwindigkeitsprofile treten gleichzeitig eine Komponente in sowie entgegen der Strömungsrichtung auf (zwei Geschwindigkeitsspitzen). Das ist ein weiterer Beweis dafür, dass die Ablösung in Strömungsrichtung sowie in der Höhe und der gesamten Ausdehnung fluktuiert.
Bei Messlinie 19 in Bild 5.17 ist eindeutig eine wenn auch geringe Bewegung in Strömungsrichtung festgestellt werden. Es hat den Anschein, dass sich die Strömung hier bereits wieder anzulegen begonnen hat, und daher auch wahrscheinlich keine Ablösung mehr vorhanden ist, bzw. diese nur noch sehr gering ist, und mit dem LDA nicht mehr detektiert werden kann (vgl. Ölanstrich Bild 5.9: Hier ist ebenfalls eine leichte Bewegung in Strömungsrichtung aber auch gleichzeitig quer zur Hauptströmungsrichtung erkennbar).

Aus dem Geschwindigkeitsprofil im Kanaleintritt konnten mithilfe einer Annäherung des Geschwindigkeitsverlaufs durch eine Potenzfunktion die Verdrängungs- sowie die Impulsverlustdicke bestimmt werden. Diese ergaben wiederum den Formfaktor (= Verdrängungsdicke zu Impulsverlustdicke), welcher bei 1,7 lag. Dieser Wert liegt genau im Bereich für turbulente Strömungen. Die Strömung ist also bereits beim Eintritt in den Kanal turbulent. Für die Berechnungen wurde die Grenzschichtdicke (4,8 mm) bei der maximalen Geschwindigkeit gewählt.

Bild 5.18 und Bild 5.19 zeigen die Geschwindigkeitsprofile der Komponente u tangential zur Kanalwand in diesem Fall aufgetragen über die Kanalhöhe. Ein positiver Wert der Geschwindigkeit bedeutet eine Bewegung in Strömungsrichtung, ein negativer Wert eine Bewegung entgegen dieser (Rückströmung).

Diese zwei Diagramme sind lediglich eine andere Darstellungsweise für die Geschwindigkeitsprofile in Bild 5.16 und Bild 5.17. Aus Gründen der Übersichtlichkeit wurde in diesen Diagrammen wie auch bei den beiden vorigen Bildern auf die Darstellung der gesamten Messlinien verzichtet, und nur die wichtigsten eingezeichnet. Außerdem ist bei gleichzeitigem Auftreten von positiver und negativer Geschwindigkeitskomponente nur eine (meist die negative) dargestellt worden, um einen einheitlichen Verlauf der Geschwindigkeitsprofile zu erhalten und ein Abschätzen der Höhe der Ablösung zu ermöglichen.
Bild 5.18 - Verlauf der Geschwindigkeitskomponente u über die Kanalhöhe (ohne Wirbelgeneratoren)
Bild 5.19 zeigt nochmals deutlich, dass bei Messlinie 12 eine erste Rückströmung erkennbar ist, welche aber nicht erhalten bleibt, denn bei Messlinie 12a sowie 13 (hier wegen der Übersichtlichkeit nicht eingezeichnet) bewegt sich die Strömung wieder eindeutig in Strömungsrichtung. Dies ist, wie bereits erwähnt, ein Indiz für die Fluktuation des Beginns der Ablösung in Strömungsrichtung bzw. des Fluktui erens der von den Wirbelgeneratoren erzeugten Wirbel (insbesondere des Wirbelkerns). Erst ab Messlinie 13a (37,5 mm stromabwärts des Kanaleintritts) ist eine bis zur Messlinie 18 anhaltende Rückströmung erkennbar. Danach (Messlinie 19: 90 mm stromabwärts vom Kanaleintritt) ist wieder eine Bewegung in Strömungsrichtung zu beobachten, auch wenn die Geschwindigkeitswerte im wandnahen Bereich
aufgrund der hohen Standardabweichung, siehe Bild 5.25, aus den Histogrammen geschätzt werden mussten.

Ebenso ergibt sich ein nahezu linearer Verlauf der Geschwindigkeitsverläufe der Komponente v normal zur Kanalwand über die Kanalhöhe, siehe Bild 5.22 und Bild 5.23. Ein negativer Wert der Geschwindigkeit bedeutet eine Bewegung von der Wand weg, ein positiver Wert eine Bewegung zur Wand hin. Aus Bild 5.22 und Bild 5.23 zeigt sich, dass die Zuströmung beim Eintritt in den Kanal nahezu tangential zur Kanalwand ist, da keine bzw. nur eine minimale Geschwindigkeit normal zur Wand auftritt. Die Unterschiede bei den Geschwindigkeiten der ersten beiden Messlinien zwischen den Messungen ohne (Bild 5.22) und mit Wirbelgeneratoren (Bild 5.23) ergeben sich wahrscheinlich aus einer ungenauen Einrichtung des Winkels des LDA-Messkopfs, nachdem dieser nur händisch verdreht werden konnte. Sobald die Krümmung der Kontur beginnt, kann die Strömung aufgrund ihrer Trägheit der Wandkontur nicht mehr so gut folgen, es entsteht eine Komponente von der Kanalwand weg (negative Geschwindigkeit). Diese Entwicklung ist sowohl bei der Messung ohne (Bild 5.22) als

Bild 5.20 – Vergleich der Höhe der Ablösung aus dem Nulldurchgang (Geschwindigkeit = 0) der Geschwindigkeitsprofile der Komponente u für die Messungen ohne und mit Wirbelgeneratoren (WG)
Messungen und Ergebnisse

auch mit Wirbelgeneratoren (Bild 5.23) erkennbar. Allerdings ist die Ablenkung von der Wand bei der Messung mit Wirbelgeneratoren für die Messlinien, die stromabwärts derselben liegen, viel stärker ausgeprägt (vgl. Bild 5.22 und Bild 5.23 Messlinien 8 und 9), da die Generatoren die Außenströmung durch ihre Wirbel nach oben hin ablenken.

Für die Bestimmung des Ablösebeginns lieferte die Geschwindigkeitskomponente \(v \) keine relevanten Informationen, da diese, wie bereits erwähnt, aufgrund des abgeschotteten unteren Teilstrahls, erst ab einem Abstand von ca. 3 mm von der Wand gemessen werden konnte, siehe Bild 5.22 bzw. Bild 5.23. Für die Abschätzung der ungefähren Höhe der Ablösung war sie ebenfalls nur bedingt geeignet, da nicht wie bei der Geschwindigkeitskomponente \(u \) angenommen werden konnte, dass dort, wo die Geschwindigkeit das Vorzeichen wechselt, der Übergang von der Außenströmung auf die Ablösung erfolgt. Die Messung der beiden Geschwindigkeitskomponenten erfolgte nämlich immer tangential bzw. normal zur Kanalwand, unabhängig davon, wie die tatsächliche Hauptströmungsrichtung verlief. Trotzdem wurde auch für diese Geschwindigkeitskomponente über die Bestimmung des Schnittpunkts der Geschwindigkeitsprofile mit der Linie, bei der die Geschwindigkeit gleich null ist, die Grenze zwischen Ablösung und Außenströmung ermittelt. Auch hier gilt wieder, dass diese Schnittpunkte sehr ungenau sind, da zwischen den Messpunkten ein Abstand von bis zu 2,5 mm liegt, d. h. der tatsächliche Schnittpunkt um einiges weiter oben bzw. unten liegen kann.

Bild 5.21 zeigt exemplarisch anhand der Messung ohne Wirbelgeneratoren den erhaltenen Verlauf der Höhe der „Rückströmung“ aus der Geschwindigkeitskomponente \(v \) normal zur Strömungsrichtung im Vergleich zu dem aus den Geschwindigkeitsprofilen für die Komponente \(u \) in Strömungsrichtung. Die aus der Komponente \(v \) normal zur Kanalwand bestimmte Höhe des Rückströmgebiets ist 90 mm stromabwärts des Kanaleintritts (Messlinie 19) um fast 75 % höher als, die aus der Komponente \(u \) ermittelte Höhe.

![Diagramm der Höhe der Rückströmung](image)

Bild 5.21 – Vergleich der Höhe der Ablösung aus dem Nulldurchgang (Geschwindigkeit = 0) der Geschwindigkeitsprofile der Komponente \(u \) sowie der Komponente \(v \) für die Messung ohne Wirbelgeneratoren (mit Wirbelgeneratoren analog)
Bild 5.22 - Verlauf der Geschwindigkeitskomponente v über die Kanalhöhe (ohne Wirbelgeneratoren)
Die folgenden Bilder Bild 5.24 bis einschließlich Bild 5.28 zeigen den Verlauf der Standardabweichung der Geschwindigkeitskomponenten tangential bzw. normal zur Strömungsrichtung aufgetragen über die Kanalhöhe für die Messungen ohne sowie mit Wirbelgeneratoren. Es sind hier wieder dieselben Messlinien wie in den vorherigen Bildern dargestellt.

Die Standardabweichung der Geschwindigkeitskomponente tangential zur Kanalwand, also in Strömungsrichtung, ist bei beiden Messungen (ohne und mit Wirbelgeneratoren) vor dem Ablösen der Strömung relativ gering und liegt in Wandnähe in der Grenzschicht bei ca. 20 m/s und weiter außen in der Hauptströmung bei ca. 10 m/s, vgl. Bild 5.24 und Bild 5.25. Im Ablösegebiet wächst die Schwankung der Geschwindigkeit stark an, was auf die hohe Instabilität der Ablösung hinweist. Eine große Standardabweichung bedeutet außerdem eine hohe Turbulenz im betrachteten Messvolumen.
Die Spitzen der Standardabweichung, die vor allem in Bild 5.24 stark ausgeprägt sind, sind ein Indiz für die Scherschicht, die sich zwischen der Ablösung und der Hauptströmung aufgrund der entgegen gesetzten Bewegungsrichtung ausbildet. Hier kommt es zu einem turbulenten Austausch zwischen den Schichten. Bei der Messung mit Wirbelgeneratoren sind nicht so deutlich ausgeprägten Spitzen der Standardabweichung erkennbar, da hier die Turbulenz aufgrund der stark fluktuiierenden Ablösung (siehe Video der Schierenvisualisierung auf CD) insgesamt größer war.
Bild 5.25 - Verlauf der mittleren Schwankung von u über die Kanalhöhe (mit Wirbelgeneratoren)
Trägt man die Höhe, bei der die Maxima der Standardabweichung auftreten, über die Lauflänge auf, und vergleicht diese mit der erhaltenen Höhe der Rückströmung aus den Geschwindigkeitsverläufen der Komponente u (in Strömungsrichtung), so erkennt man, dass diese trotz der Ungenauigkeiten aufgrund des relativ großen Abstands der Messpunkte und den teilweise willkürlich verbundenen Geschwindigkeitsverläufen zwischen Ablösung und gesunder Strömung gut übereinstimmen, siehe Bild 5.26.

Bild 5.26 – Vergleich der Höhe der Ablösung aus dem Nulldurchgang (Geschwindigkeit = 0) der Geschwindigkeitsprofile der Komponente u bzw. der maximalen Standardabweichung von u für die Messungen ohne und mit Wirbelgeneratoren (WG)

Bild 5.27 und Bild 5.28 zeigen die Standardabweichung der Geschwindigkeitskomponente v normal zur Kanalwand bzw. zur Strömungsrichtung wiederum aufgetragen über die Kanalhöhe. Es fällt die sehr geringe Standardabweichung bei beiden Bildern im Bereich der Strömung, wo keine Ablösung zu erkennen war, auf. Die Strömung ist hier also sehr stabil und weist nur eine geringe Turbulenz normal zur Kanalwand auf. Bei den hinteren Messlinien, die eindeutig im Ablösebereich liegen, kommt es zum Auftreten sehr hoher Schwankungen der Geschwindigkeit von über 200 m/s, d.h. die Strömung ist hier normal zur Hauptströmungsrichtung sehr instabil.
Messungen und Ergebnisse

Bild 5.27 - Verlauf der mittleren Schwankung von v über die Kanalhöhe (ohne Wirbelgeneratoren)
Bild 5.28 - Verlauf der mittleren Schwankung von v über die Kanalhöhe (mit Wirbelgeneratoren)
5.5 Laservibrometer

Mithilfe der Laservibrometrie sollte der Ablösebeginn anhand der auftretenden Dichteschwankungen durch die erhöhte Turbulenz in diesem Bereich bestimmt werden.

5.5.1 Messablauf

Vor dem Beginn der Messung wurde der Spiegel, der der Reflexion des Messstrahls dient, so ausgerichtet, dass der Balken, der die Stärke des zurückgeworfenen Laserstrahls bzw. des erhaltenen Signals anzeigt (am Laserinterferometer direkt bzw. an dessen Controller ablesbar), vollständig ausgefüllt war.

Die Einstellungen des Controllers sind in Tabelle 5.1 abzulesen.

Tabelle 5.1 – Einstellungen des Controllers für die durchgeführten Messungen

<table>
<thead>
<tr>
<th>Einstellung</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>velocity range</td>
<td>125 m/sV</td>
</tr>
<tr>
<td>displacement range</td>
<td>20 mm/V</td>
</tr>
<tr>
<td>Filter</td>
<td>100 Hz</td>
</tr>
</tbody>
</table>

Da eine eventuelle Änderung des Frequenzverlaufs aufgrund der Ablösung an der äußeren Kanalwand bestimmt werden sollte, wurde hier jeweils nur an einem Punkt pro Linie sehr nahe an der Kanalwand gemessen. Zum Anfahren der Messpunkte diente wieder die Software des LDA-Messsystems (BSA Flow Manager 1.2), das die Traversiereinrichtung steuert. Die exakten Koordinaten der Laservibrometer-Messungen sind in Tabelle A.10 im Anhang festgehalten.

Zur Aufnahme des Messsignals kam das am Institut erstellte Lab-View-Programm „record03.vi“ zum Einsatz. Die Einstellungen des Programms für die im Rahmen dieser Arbeit durchgeführten Messungen sind in Tabelle 5.2 aufgelistet.

Tabelle 5.2 – Einstellungen des Messprogramms „record03.vi“ für die durchgeführten Messungen

<table>
<thead>
<tr>
<th>Einstellung</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>coupling</td>
<td>DC*</td>
</tr>
<tr>
<td>scan backlog</td>
<td>52</td>
</tr>
<tr>
<td>Dauer</td>
<td>5 s</td>
</tr>
<tr>
<td>frequency span</td>
<td>95.000 Hz</td>
</tr>
<tr>
<td>scans to write</td>
<td>1000</td>
</tr>
<tr>
<td>buffer size</td>
<td>80.000</td>
</tr>
<tr>
<td>device</td>
<td>2</td>
</tr>
<tr>
<td>Nr. of channels</td>
<td>2</td>
</tr>
</tbody>
</table>

*Gleichanteil der Spannung wird mit gemessen

Das Auswerten der Files, die im cdl-Format abgespeichert werden, erfolgte mit einer bereits vorhandenen Matlab-Routine.

Bei der gewählten Darstellung der Ergebnisse war es nicht möglich, die tatsächlichen Abstände zwischen den Messpositionen entlang der Lauflänge darzustellen. Es sind daher die Messpunkte in äquidistantem Abstand abgebildet.

Die Laservibrometrie ist ein integrales Messverfahren, d. h. es werden über den gesamten Weg, den der Messstrahl durchläuft (Laservibrometer – Luft – Kanal – Luft - Spiegel und zurück), die

5.6 Messung ohne Wirbelgeneratoren

Bild 5.29 zeigt die gemessenen Dichteschwankungen der einzelnen Messpositionen entlang der Kanalwand über den gesamten Kanalquerschnitt (bzw. gesamte Länge, die vom Messstrahl durchlaufen wurde), aufgetragen über einen Frequenzbereich von 30 bis 1000 Hz ohne den Einsatz der Wirbelgeneratoren. Im oberen Frequenzbereich konnten keine signifikanten Unterschiede zwischen den Messpositionen festgestellt werden. Bei den ersten beiden Messpunkten sind nur sehr geringe Amplituden der Dichteschwankungen im Frequenzbereich ab 100 Hz erkennbar. Dies zeigt, wie bei den LDA-Messungen (vgl. Bild 5.24 bis Bild 5.28), dass die Zuströmung sehr stabil ist, und die Schwankungen der Dichte bzw. der Geschwindigkeit sehr niedrig ausfallen. Auch weiter stromabwärts sind unter 100 Hz keine bzw. nur minimale Dichteänderungen erkennbar. Dafür wachsen im oberen Frequenzbereich die Amplituden an. Das deutet auf eine erhöhte Turbulenz in diesem Bereich hin. Erst bei Messlinie 9 (22,5 mm stromabwärts vom Kanaleintritt), wo bei der LDA-Messung ein erstes Rückströmen erkennbar war, siehe Bild 5.16, ist ein Anwachsen der Dichteschwankungen auch im unteren Frequenzbereich erkennbar. Bei Messlinie 10 ist ein sprunghafter Anstieg der Amplituden bei fast allen Frequenzen im betrachteten Frequenzbereich zu beobachten. Vor allem die tieffrequenten Schwankungen der Dichte lassen vermuten, dass es sich um einen großen Ablösebereich handelt, was aus den anderen Messergebnissen bereits bestätigt werden konnte. Die besonders ausgeprägten Peaks bei ca. 100 bis 250 Hz bei Messlinie 9 bzw. 10 sind wahrscheinlich ein Resultat des Fluktutierens der gesamten Ablösung über die Höhe. In diesem Fall kann der Beginn der Ablösung
relativ gut bestimmt werden, da dieser über ca. 80 % der Kanalbreite an der gleichen Position in Lauflänge (ca. 20 mm stromabwärts des Kanaleintritts) liegt, siehe Ölanstrich (Bild 5.8). Weiter stromabwärts, also hinter dem Ablösebeginn der Strömung, sinken die Dichteschwankungen über den gesamten Frequenzbereich wieder stark ab, und es kommt bis zur letzten Messlinie vor dem Kanalaustritt zu keinem markanten Anstieg mehr, d.h. die Ablösung ist hier sehr stabil und dauerhaft vorhanden, was auch aus anderen Messergebnissen hervorging, vgl. PIV (Bild 5.11), LDA (Bild 5.18) oder Schlierenvisualisierung (Bild 5.32).

5.6.1 Messung mit Wirbelgeneratoren

Bild 5.30 zeigt die gemessenen Dichteschwankungen der einzelnen Messpositionen entlang der Kanalwand über den gesamten Kanalquerschnitt aufgetragen über einen Frequenzbereich von 30 bis 1000 Hz unter dem Einsatz der Wirbelgeneratoren, da über diesen Abschnitt wie bei der Messung ohne Wirbelgeneratoren wieder die markantesten Unterschiede erkennbar waren. Zwischen den Messlinien 4 bis 7 war keine Messung der Dichteschwankungen an der Kanalwand möglich, da sich dort die Wirbelgeneratoren befanden, die den Messstrahl zumindest teilweise abschotteten, und dadurch keine verwertbaren Messergebnisse zuließen. Da der Ablösebeginn aber sowieso weiter stromabwärts liegen musste (aufgrund Ergebnissen aus Messung ohne Wirbelgeneratoren), war dieses Areal von keiner großen Bedeutung, da mithilfe des Laservibrometers hauptsächlich der Ablösebeginn bestimmt werden sollte.

![Dichteschwankungen in den einzelnen Messpositionen aufgetragen über die Frequenz mit Wirbelgeneratoren](image)

Bild 5.30– Dichteschwankungen in den einzelnen Messpositionen aufgetragen über die Frequenz mit Wirbelgeneratoren

Bei den ersten Messlinien sind wie bei der Messung ohne Wirbelgeneratoren (siehe Bild 5.29) nur sehr geringe Amplituden der Dichteschwankungen im oberen Frequenzbereich ab 300 Hz erkennbar. Die Zuströmung ist wieder relativ stabil. Direkt hinter den Wirbelgeneratoren steigen die Dichteschwankungen über den gesamten betrachteten Frequenzbereich wieder sprunghaft an. Dieser Effekt kann aber eigentlich nicht von den Generatoren kommen, da von ihnen ausgelöste Sekundäreffekte bei viel höheren Frequenzen liegen. Die Ablösefrequenz eines Wirbels an der Hinterkante der Generatoren liegt z. B. bei ca. 120 000 Hz. Dieser Wert wurde mithilfe der Strouhal-Zahl \(Sr = f \cdot l / u \), charakteristischer Wert
bei 0,2) ermittelt, aus der bei vorgegebener charakteristischer Länge l (hier Breite der Generatoren = 0,5 mm) und Geschwindigkeit u (ca. 300 m/s) die Ablösefrequenz ermittelt werden kann. Es ist aber nicht auszuschließen, dass die hohen Dichteschwankungen im niedrigen Frequenzbereich nicht doch auf das Vorhandensein der Wirbelgeneratoren zurückzuführen ist, denn bei der Schlierenvisualisierung ist im Bereich hinter den Wirbelgeneratoren ein starker Dichtegradient nach oben (grün) erkennbar, siehe Bild 5.32.

Die ausgeprägten Amplituden der Dichteschwankungen im Bereich von 100 bis 250 Hz bei Messlinie 12 und 13 (gleiche Größenordnung wie bei Messung ohne Wirbelgeneratoren) sind zwar ein Indiz für den Beginn der Ablösung, diese lässt sich aber nicht so genau bestimmen, da kein einheitlicher Ablösepunkt vorhanden ist. Dieser schwankt über die gesamte Kanalbreite relativ stark, und fluktuiert auch zeitlich in der Höhe sowie in Laufrichtung.

Ab Messlinie 14 zeigt sich ein ähnliches Resultat wie in Bild 5.29, d. h. die Strömung dürfte in diesem Areal wieder einigermaßen stabil sein, trotzdem die Ablösung hier nicht dauerhaft erkennbar ist, siehe Schlierenvisualisierung Bild 5.34 bzw. Video auf CD (Schlierenvisualisierung).

5.7 Schlierenvisualisierung

Die Schlierenvisualisierung ermöglichte, wie der Ölanstrich eine rein qualitative Betrachtung des Strömungsverlaufs im Kanal, wobei zu beachten ist, dass hier der Verlauf der Strömung über die gesamte Breite des Kanals in einer Bildebene dargestellt ist, und nicht wie z.B. bei der PIV-Messung eine genau definierte Ebene betrachtet werden kann.

5.7.1 Messablauf

Tabelle 5.3 verdeutlicht nochmals den, in Kapitel 4.7.2 bereits erläuterten, Zusammenhang der Dichteänderungen mit den auftretenden Farben. Steigende Dichte in eine Richtung bedeutet gleichzeitig wachsenden statischen Druck, und somit sinkende Geschwindigkeit.

<table>
<thead>
<tr>
<th>Farbe</th>
<th>Steigende Dichte nach</th>
</tr>
</thead>
<tbody>
<tr>
<td>grün</td>
<td>oben</td>
</tr>
<tr>
<td>rot</td>
<td>unten</td>
</tr>
<tr>
<td>blau</td>
<td>links</td>
</tr>
<tr>
<td>gelb</td>
<td>rechts</td>
</tr>
</tbody>
</table>

5.7.2 Messung ohne Wirbelgeneratoren

Bild 5.31 – Gemitteltes Ergebnis aus 77 Einzelbildern der Schlierenvisualisierung ohne Wirbelgeneratoren (Strömung von rechts nach links)
Bild 5.31 zeigt das gemittelte Ergebnis aus 77 Einzelbildern (Videosequenz von ca. 3 Sekunden). Zur Orientierung sind der aus der LDA-Messung und dem Ölanstrich ermittelte Ablösebeginn sowie die Position des Kanaleintritts eingezeichnet. Zusätzlich sind ausgehend vom Eintritt alle 5 mm Markierungen in Lauflänge angebracht.

In Bild 5.32 ist der ungefähre zeitliche Verlauf der Strömung dargestellt (Umlauf im Uhrzeigersinn, beginnend bei Bild 1). Die Ablösung an der äußeren Kanalwand ist zwar ständig vorhanden (wie oben bereits erwähnt erkennbar durch grünen Streifen), schwankt jedoch in der Höhe. Auch die Verengung des Kanals durch die Ablösung ist sowohl in Bild 5.31 als auch in Bild 5.32 gut zu erkennen. Der Kanal wirkt über einen kurzen Bereich als Düse (vgl. statische Druckmessung Bild 5.5), wodurch die Strömung an der Innenkontur beschleunigt wird, und es zu einem Absinken des statischen Drucks an dieser kommt (gelber Fleck). Bei dem rot-blauen, leicht schräg nach rechts unten weisenden, Streifen (steigender Druck nach unten und nach links), der weiter stromabwärts an der Innenwand zu sehen ist, handelt es sich um einen schwachen Verdichtungsstoß, der den zu geringen statischen Druck aufgrund der beschleunigten Strömung ausgleicht. Die Strömung befindet sich in diesem Areal zumindest kurzfristig im Bereich der Schallgeschwindigkeit.

Bild 5.32 – Schlierenvisualisierung der Ablösung bei der Messung ohne Wirbelgeneratoren (Strömung von rechts nach links)
5.7.3 Messung mit Wirbelgeneratoren

In Bild 5.33 ist das gemittelte Ergebnis der Schlierenvisualisierung aus 84 Einzelbildern (aufgenommene Sequenz von ca. 3 Sekunden) abgebildet. Zur Orientierung sind der aus der LDA-Messung und dem Ölanstrich ermittelte Ablösebeginn, die Position der Wirbelgeneratoren und des Kanaleintritts eingezeichnet.

Im Vergleich zu Bild 5.31 ist in Bild 5.33 kein grüner Streifen erkennbar, der die Ausdehnung der Ablösung markiert. Die Ausdehnung der Ablösung lässt sich hier nicht mehr so eindeutig bestimmen wie bei der Messung ohne Wirbelgeneratoren. In Bild 5.34, welches ähnlich wie Bild 5.31 den ungefähren zeitlichen Verlauf der Strömung dargestellt (Umlauf im Uhrzeigersinn, beginnend bei Bild 1), zeigt sich aber, dass die Ablösung sowohl in der Höhe als auch entlang der Lauflänge stark fluktuiert, wodurch kein eindeutiger Dichtegradient mehr erkennbar ist, der die Grenze zwischen der Ablösung und der Außenströmung markiert.

Der grüne Streifen, der hinter den Wirbelgeneratoren zu sehen ist, entsteht durch die Wirbel, die von diesen erzeugt werden. Etwas weiter stromaufwärts, an der Hinterkante der Wirbelgeneratoren ist ein Dichtegradient nach links erkennbar (blau), was auf einen Verdichtungsstoß hinweist. Hier wird nämlich die Strömung durch die Generatoren sehr stark umgelenkt, wodurch es zu Geschwindigkeitsspitzen von über 310 m/s kommt. Auch der Bereich steigender Dichte nach oben (grün) über sowie knapp hinter den Wirbelgeneratoren lässt sich aufgrund der auftretenden hohen Geschwindigkeiten erklären, die nach oben hin wieder absinken, wodurch es zu einem Anstieg des statischen Drucks und der Dichte von der äußeren Kanalwand weg kommt.

An der inneren Kanalwand ist wieder der Verdichtungsstoß erkennbar. Bild Nr. 2 in Bild 5.34 zeigt sehr deutlich, dass die Wirkung des Verdichtungsstoßes phasenweise sogar bis an die äußere Kanalwand reicht, wo es zur Ausbildung von Dichtegradienten nach unten (rot) sowie nach links (blau) kommt (in übrigen Bildern auch erkennbar, jedoch nicht so stark ausgeprägt). Dieser Effekt ist bei der Messung ohne Wirbelgeneratoren nicht aufgetreten, da die Ablösung dort sehr stark ausgeprägt ist.
Es zeigt sich also, dass man mithilfe der Schlierenvisualisierung den Ablösebeginn sowie die ungefähre Ausdehnung der Ablösung nur feststellen kann, wenn diese sehr wenig fluktuiert, und über einen relativ großen Bereich der Kanalbreite an derselben Position ablöst.
6 Zusammenfassung und Ausblick

Im Rahmen dieser Arbeit konnte eindeutig gezeigt werden, dass die an der Universität Genua in einem subsonischen Windkanal auf einer ebenen Platte getesteten Wirbelgeneratoren zur Beeinflussung der Strömungsablösung auch an gekrümmten Wänden, insbesondere im untersuchten S-förmigen Kanal, eine Wirkung auf die Ablösung haben. Der Ablösebeginn konnte einerseits im Mittel ca. 10 mm stromabwärts verschoben werden. Andererseits verringerte sich die Ablösung in ihrer Ausdehnung als auch in der Höhe um mehr als die Hälfte. In der mit Laser Doppler Anemometer und Particle Image Velocimeter vermessen Ebene parallel zur Strömungsrichtung konnte sogar ein Wiederanlegen der Strömung vor dem Austritt aus dem Kanal festgestellt werden, was ohne Wirbelgeneratoren nicht der Fall war. Es hat sich ebenfalls herausgestellt, dass die Wirkung der Wirbelgeneratoren zeitlich nicht konstant ist, sondern fluktuiert.

Es hat sich außerdem gezeigt, dass die Schlierenvisualisierung sowie die Laservibrometrie für die Bestimmung des Beginns sowie der Ausdehnung der Ablösung alleinig kaum geeignet sind, da diese die Strömung integral über die gesamte Kanalbreite darstellen. Fluktuiert die Ablösung nun stark in ihrer Ausdehnung und ihrem Ablösebeginn, so ist kein signifikanter Unterschied der Dichtegradienten bzw. im Verlauf der Dichteschwankungen erkennbar. In Verbindung mit anderen Messverfahren liefern sie jedoch zusätzliche Einblicke in die Vorgänge der Strömung durch den stark umlenkenden Kanal, insbesondere der Ablösung.

7 Literaturverzeichnis

BAUMGARTNER, Wolfgang: Experimentelle Strömungsuntersuchungen an einem NACA0012 Tragflügelprofil mit laseroptischen Messsystemen. TU Graz, Institut für Thermische Turbomaschinen und Maschinendynamik, 2003

BRENN, Günter; HIRSCHLER, Thomas; MEILE, Walter: Strömungslehre und Wärmeübertragung I. Graz, TU Graz; Institut für Strömungslehre und Wärmeübertragung, Vorlesungsskriptum, 2003

ERHARD, J.: Design, Construction and Commissioning of a Transonic Test-Turbine Facility. TU Graz, Institut für Thermische Turbomaschinen und Maschinendynamik, PhD, 2002

HAMPEL, Bernd: Ortsaufgelöste laseroptische Messungen von Dichtefluktuationen in turbinenrelevanten Gasströmungen. TU Graz, Institut für Thermische Turbomaschinen und Maschinendynamik, Dissertation, 2005

NITSCHER Wolfgang; BRUNN André: Strömungsmesstechnik, 2. Aufl. Berlin Heidelberg: Springer Verlag, 2006

SCHLICHTING, Herrmann; GERSTEN, Klaus: Grenzschichttheorie. 9. Aufl. Berlin Heidelberg: Springer-Verlag, 1997

8 Abbildungsverzeichnis

Bild 1.1 – Fan-Triebwerk GP7000 (www.aircraftenginedesign.com) .. 1
Bild 1.2 – Prinzip eines zweiwelligen Fantriebwerks (www.wikipedia.org) ... 2
Bild 1.3 – Ausschnitt aus Versuchsturbine mit den verschiedenen Übergangskanälen (rot umrandet) 4
Bild 1.4 Geometrie und Anordnung der Wirbelgeneratoren (links) sowie deren Positionierung in der Versuchsturbine .. 4
Bild 1.5 – Einsatz für die Untersuchungen im transsonischen Windkanal ... 5
Bild 1.6 – Übergang von laminarer auf turbulente Grenzschicht entlang längsgeradeter ebenen Platte (Schlichting; Gersten, 1997) .. 6
Bild 2.2 – Aufbau der turbulenten Grenzschicht entlang einer ebenen Platte (Brenn et al., 2003) ... 9
Bild 2.3 – Aufbau der turbulenten Grenzschicht entlang einer gekrümmten Wand (Überlappings-schichten nicht dargestellt), (Brenn et al., 2003) .. 9
Bild 2.4 – Grenzschichtströmung mit Ablösung bei A (Schlichting; Gersten, 1997) ... 11
Bild 2.5 – Einsatz von rotierenden Zylindern zur Verhinderung der Grenzschichtablösung am Beispiel eines Tragflügels und eines LKW-Anhängers (Gad-el-Hak, 2006) ... 12
Bild 2.6 – Strömung in einem Diffusor nach L. Prandtl; O. Tietjens (1931), (a) Ablösung an beiden Diffusorwänden, (b) Absaugung der Grenzschicht an der oberen Diffusorwand, (c) Absaugung an beiden Diffusorwänden (Schlichting; Gersten, 1997)... 13
Bild 2.7 – Entstehung des Wirbels am Beispiel eines tragflügelähnlichen Wirbelgenerators (Hennecke, 2000) 14
Bild 2.8 – Formen und Anordnungen passiver Wirbelgeneratoren (Lin, 2002) .. 15
Bild 2.9 – Vergleich konventioneller Hochprofil- mit Niedrigprofil-Wirbelgeneratoren .. 15
Bild 2.10 – Prinzip der Wirbelgeneratoren mit gegensinnig drehenden Wirbeln (a) aus Angele; Grewe, 2007, und Foto der tatsächlich verwendeten Wirbelgeneratoren (b) ... 16
Bild 2.11 – Prinzip eines Diffusors ... 16
Bild 2.12 - Leistungsdigramm für zweidimensionale Diffusoren von Reneau, Johnstone und Kline (aus Sovran; Klomp, 1965) .. 17
Bild 2.13 – Übergangskanäle des Zweistrom-Strahltriebwerks PW6000 (www.aircraftenginedesign.com) 18
Bild 2.14 – Aggressiver (links) und hochaggressiver (rechts), im Rahmen des Projekts AIDA, untersuchte Übergangskanäle (Schlichting; Gersten, 1997) ... 19
Bild 2.15 – Strömungsverlauf an der ersten Krümmung eines stark gekrümmten S-förmigen Turbinenwischendiffusors .. 20
Bild 3.1 – Schaltplan der Verdichteranlage ... 21
Bild 3.2 – Fahrweise 2 der Verdichteranlage .. 22
Bild 3.3 – Transsonischer Windkanal mit Versuchs ein satz .. 22
Bild 3.4 - Vergleich der Originalinnenkontur des Ringkanals mit der neu ausgelagten Innenkontur des rechteckigen Kanals (Koordinaten von Versuchsturbine) .. 23
Bild 3.5 – Zuschneiden der inneren Kanalkontur ... 24
Bild 3.6 – Bekleben der Kanalinnenkontur mit Sperrholzplatte (a) und Einkleben der Gewindebolzen (b) 25
Bild 3.7 – Aufbau des Versuchs ein satzes im Windkanal .. 25
Bild 3.8 – Geometrie und Anordnung der Wirbelgeneratoren (a) bzw. Foto der verwendeten Wirbelgeneratoren (b) 26
Bild 4.1 – Temperatursonde im eingebauten Zustand ... 28
Bild 4.2 – Statische Druckmessstellen, Totaldruckräume und Totaltemperatursonde .. 29
Bild 4.3 – Positionen der Messstellen des Totaldruckbaums im Kanaleintritt ... 30
Bild 4.4 – Positionen der Messstellen des Totaldruckbaums in der mittleren Schaufel im Kanalaus tri tt ... 31
Bild 4.5 – Sprungantwort für unterschiedliche Teilchengendurchmesser .. 33
Bild 4.6 – Teilchenkollektivvermögen für unterschiedliche Durchmesser .. 33
Bild 4.7 – Prinzipielle Funktion der digitalen PIV ... 34
Bild 4.8 – Belichtungszeit von Bild 1 und Bild 2 .. 35
Bild 4.9 - Verwendetes PIV-System (links) und Aufbau der Lichtschmittsonde (rechts) .. 35
Bild 4.11 – Interferenzstreifenmuster zweier überlagerten Laserstrahlen ... 37
Bild 4.12 – Strahlgeometrie und Messvolumen (Tropea, 2002) .. 38
Bild 4.13 – Durchtritt eines Tracerpartikels durch das Messvolumen (Tropea, 2002) .. 38
Bild 4.14 – Prinzip der Richtungserkennung durch Shifting (Tropea, 2002) ... 39
Bild 4.15 – Bragg-Zelle verwendet als Strahlteiler und zur Frequenzverschiebung eines Strahles (Tropea, 2002) 40
Bild 4.16 – Vereinfachter optischer Aufbau eines Zweistrohlfaser-LDA (Tropea, 2002) .. 41
Bild 4.17 – Prinzip der Laservibrometers .. 43
Bild 4.18 – Prinzip der Schlierenvisualisierung .. 45
Bild 4.19 – Erster Teil des Schliereinaufbaus (linke Seite in Bild 4.18) ... 46
Bild 4.20 – Zweiter Teil des Schliereinaufbaus (rechte Seite in Bild 4.18) ... 46
Bild 4.21 – Blende (a) und Filter (b) für die Vier-Farben-Schlierenvisualisierung (Abbildung der Farben in Blickrichtung des Beobachters, also von der Kamera aus) ... 47
Bild 5.1 – Kanal mit Totaldruckräumen im Kanalein- und -aus tri tt, Referenzebenen für das bessere Verständnis der Messergebnisse, und Position der untersuchten Wirbelgeneratoren .. 48
Bild 5.2 – Totaldruckverteilung über die relative Kanalhöhe in Prozent im Eintrittsquerschnitt (beginnend bei der äußeren Kanalwand) .. 49
Bild 5.3 – Vergleich der Totaldruckverläufe sowie der Druckbeiwerte im Kanaleintritt ohne und mit Wirbelgeneratoren im Bereich der Grenzschichtströmung an der äußeren Kanalwand .. 50
Anhang

Anhang A Koordinaten für die Messungen

A.1 Koordinaten der statischen Druckmessbohrungen

Tabelle A.1 - Koordinaten der statischen Druckmessstellen entlang der Laufläche an der äußeren Kanalwand (Nullpunkt bei Kanaleintritt)

<table>
<thead>
<tr>
<th>Messstelle</th>
<th>Lauflänge mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-68</td>
</tr>
<tr>
<td>2</td>
<td>-10</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>25</td>
</tr>
<tr>
<td>8</td>
<td>30</td>
</tr>
<tr>
<td>9</td>
<td>35</td>
</tr>
<tr>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>11</td>
<td>45</td>
</tr>
<tr>
<td>12</td>
<td>50</td>
</tr>
<tr>
<td>13</td>
<td>55</td>
</tr>
<tr>
<td>14</td>
<td>60</td>
</tr>
<tr>
<td>15</td>
<td>65</td>
</tr>
<tr>
<td>16</td>
<td>70</td>
</tr>
<tr>
<td>17</td>
<td>75</td>
</tr>
<tr>
<td>18</td>
<td>80</td>
</tr>
<tr>
<td>19</td>
<td>85</td>
</tr>
<tr>
<td>20</td>
<td>90</td>
</tr>
<tr>
<td>21</td>
<td>95</td>
</tr>
<tr>
<td>22</td>
<td>100</td>
</tr>
<tr>
<td>23</td>
<td>105</td>
</tr>
<tr>
<td>24</td>
<td>110</td>
</tr>
</tbody>
</table>

Tabelle A.2 - Koordinaten der statischen Druckmessstellen entlang der Laufläche an der inneren Kanalwand (Nullpunkt bei Kanaleintritt)

<table>
<thead>
<tr>
<th>Messstelle</th>
<th>Lauflänge mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-70</td>
</tr>
<tr>
<td>2</td>
<td>-10</td>
</tr>
<tr>
<td>3</td>
<td>98</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Messstelle</th>
<th>Lauflänge mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-10</td>
</tr>
<tr>
<td>2</td>
<td>98</td>
</tr>
</tbody>
</table>
A.2 Koordinaten der LDA-Messpunkte

Tabelle A.3 - Koordinaten der LDA-Messlinien an der Wand inklusive des Drehwinkel des LDA-Messkopfes (Nullpunkt des Winkels bei 12 Uhr, Drehung des Messkopfes gegen den Uhrzeigersinn)

<table>
<thead>
<tr>
<th>Messlinie</th>
<th>Drehwinkel [°]</th>
<th>y-Richtung [mm]</th>
<th>z-Richtung [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>-9.98</td>
<td>-30.95</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>-30.4</td>
</tr>
<tr>
<td>3</td>
<td>6.58</td>
<td>4.1247</td>
<td>-29.7629</td>
</tr>
<tr>
<td>4</td>
<td>17.4</td>
<td>9.1306</td>
<td>-28.3834</td>
</tr>
<tr>
<td>5</td>
<td>20.62</td>
<td>11.4685</td>
<td>-27.4074</td>
</tr>
<tr>
<td>6</td>
<td>24.4</td>
<td>13.9482</td>
<td>-26.6046</td>
</tr>
<tr>
<td>7</td>
<td>26.83</td>
<td>16.2687</td>
<td>-25.6625</td>
</tr>
<tr>
<td>8</td>
<td>30.26</td>
<td>18.4586</td>
<td>-24.2643</td>
</tr>
<tr>
<td>9</td>
<td>33.58</td>
<td>20.7061</td>
<td>-23.0481</td>
</tr>
<tr>
<td>10</td>
<td>39.65</td>
<td>22.6319</td>
<td>-21.2124</td>
</tr>
<tr>
<td>11</td>
<td>40.2</td>
<td>24.4652</td>
<td>-19.4764</td>
</tr>
<tr>
<td>12</td>
<td>46.68</td>
<td>26.5143</td>
<td>-17.6948</td>
</tr>
<tr>
<td>12a*</td>
<td>48.615</td>
<td>28.238</td>
<td>-15.7741</td>
</tr>
<tr>
<td>13</td>
<td>50.55</td>
<td>29.9611</td>
<td>-13.8528</td>
</tr>
<tr>
<td>13a*</td>
<td>53.195</td>
<td>30.8944</td>
<td>-11.2739</td>
</tr>
<tr>
<td>14</td>
<td>55.84</td>
<td>33.1074</td>
<td>-9.6525</td>
</tr>
<tr>
<td>15</td>
<td>57.21</td>
<td>35.8777</td>
<td>-5.3801</td>
</tr>
<tr>
<td>16</td>
<td>57.54</td>
<td>38.5382</td>
<td>-1.1713</td>
</tr>
<tr>
<td>17</td>
<td>54.8</td>
<td>44.35</td>
<td>6.12</td>
</tr>
<tr>
<td>18</td>
<td>45.42</td>
<td>50.8425</td>
<td>13.6996</td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>66.59</td>
<td>25.86</td>
</tr>
</tbody>
</table>

* Nur bei Messung mit Wirbelgeneratoren
Tabelle A.4 - Koordinaten der LDA-Messlinien 1 bis 3 für die Traversierung

Messlinie 1

<table>
<thead>
<tr>
<th>Messpunkt Nr.</th>
<th>x-Richtung [mm]</th>
<th>y-Richtung [mm]</th>
<th>z-Richtung [mm]</th>
<th>Wandabstand [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>67.5</td>
<td>-9.98</td>
<td>-30.95</td>
<td>0.2</td>
</tr>
<tr>
<td>2</td>
<td>67.5</td>
<td>-9.98</td>
<td>-31.15</td>
<td>0.4</td>
</tr>
<tr>
<td>3</td>
<td>67.5</td>
<td>-9.98</td>
<td>-31.35</td>
<td>0.6</td>
</tr>
<tr>
<td>4</td>
<td>67.5</td>
<td>-9.98</td>
<td>-31.55</td>
<td>0.8</td>
</tr>
<tr>
<td>5</td>
<td>67.5</td>
<td>-9.98</td>
<td>-31.75</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>67.5</td>
<td>-9.98</td>
<td>-31.95</td>
<td>1.2</td>
</tr>
<tr>
<td>7</td>
<td>67.5</td>
<td>-9.98</td>
<td>-32.15</td>
<td>1.4</td>
</tr>
<tr>
<td>8</td>
<td>67.5</td>
<td>-9.98</td>
<td>-32.35</td>
<td>1.6</td>
</tr>
<tr>
<td>9</td>
<td>67.5</td>
<td>-9.98</td>
<td>-32.55</td>
<td>1.8</td>
</tr>
<tr>
<td>10</td>
<td>67.5</td>
<td>-9.98</td>
<td>-33.55</td>
<td>2.8</td>
</tr>
<tr>
<td>11</td>
<td>67.5</td>
<td>-9.98</td>
<td>-34.55</td>
<td>3.8</td>
</tr>
<tr>
<td>12</td>
<td>67.5</td>
<td>-9.98</td>
<td>-35.55</td>
<td>4.8</td>
</tr>
<tr>
<td>13</td>
<td>67.5</td>
<td>-9.98</td>
<td>-38.05</td>
<td>7.3</td>
</tr>
<tr>
<td>14</td>
<td>67.5</td>
<td>-9.98</td>
<td>-40.55</td>
<td>9.8</td>
</tr>
<tr>
<td>15</td>
<td>67.5</td>
<td>-9.98</td>
<td>-43.05</td>
<td>12.3</td>
</tr>
<tr>
<td>16</td>
<td>67.5</td>
<td>-9.98</td>
<td>-45.55</td>
<td>14.8</td>
</tr>
</tbody>
</table>

Messlinie 2

<table>
<thead>
<tr>
<th>Messpunkt Nr.</th>
<th>x-Richtung [mm]</th>
<th>y-Richtung [mm]</th>
<th>z-Richtung [mm]</th>
<th>Wandabstand [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>67.5</td>
<td>0</td>
<td>-30.4</td>
<td>0.2</td>
</tr>
<tr>
<td>2</td>
<td>67.5</td>
<td>0</td>
<td>-30.6</td>
<td>0.4</td>
</tr>
<tr>
<td>3</td>
<td>67.5</td>
<td>0</td>
<td>-30.8</td>
<td>0.6</td>
</tr>
<tr>
<td>4</td>
<td>67.5</td>
<td>0</td>
<td>-31</td>
<td>0.8</td>
</tr>
<tr>
<td>5</td>
<td>67.5</td>
<td>0</td>
<td>-31.2</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>67.5</td>
<td>0</td>
<td>-31.4</td>
<td>1.2</td>
</tr>
<tr>
<td>7</td>
<td>67.5</td>
<td>0</td>
<td>-31.6</td>
<td>1.4</td>
</tr>
<tr>
<td>8</td>
<td>67.5</td>
<td>0</td>
<td>-31.8</td>
<td>1.6</td>
</tr>
<tr>
<td>9</td>
<td>67.5</td>
<td>0</td>
<td>-32</td>
<td>1.8</td>
</tr>
<tr>
<td>10</td>
<td>67.5</td>
<td>0</td>
<td>-33</td>
<td>2.8</td>
</tr>
<tr>
<td>11</td>
<td>67.5</td>
<td>0</td>
<td>-34</td>
<td>3.8</td>
</tr>
<tr>
<td>12</td>
<td>67.5</td>
<td>0</td>
<td>-35</td>
<td>4.8</td>
</tr>
<tr>
<td>13</td>
<td>67.5</td>
<td>0</td>
<td>-37.5</td>
<td>7.3</td>
</tr>
<tr>
<td>14</td>
<td>67.5</td>
<td>0</td>
<td>-40</td>
<td>9.8</td>
</tr>
<tr>
<td>15</td>
<td>67.5</td>
<td>0</td>
<td>-42.5</td>
<td>12.3</td>
</tr>
<tr>
<td>16</td>
<td>67.5</td>
<td>0</td>
<td>-45</td>
<td>14.8</td>
</tr>
</tbody>
</table>

Messlinie 3

<table>
<thead>
<tr>
<th>Messpunkt Nr.</th>
<th>x-Richtung [mm]</th>
<th>y-Richtung [mm]</th>
<th>z-Richtung [mm]</th>
<th>Wandabstand [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>67.5</td>
<td>4.1247</td>
<td>-29.7629</td>
<td>0.2</td>
</tr>
<tr>
<td>2</td>
<td>67.5</td>
<td>4.1476</td>
<td>-29.9616</td>
<td>0.4</td>
</tr>
<tr>
<td>3</td>
<td>67.5</td>
<td>4.1705</td>
<td>-30.1603</td>
<td>0.6</td>
</tr>
<tr>
<td>4</td>
<td>67.5</td>
<td>4.1934</td>
<td>-30.359</td>
<td>0.8</td>
</tr>
<tr>
<td>5</td>
<td>67.5</td>
<td>4.2164</td>
<td>-30.5576</td>
<td>1.0</td>
</tr>
<tr>
<td>6</td>
<td>67.5</td>
<td>4.2393</td>
<td>-30.7563</td>
<td>1.2</td>
</tr>
<tr>
<td>7</td>
<td>67.5</td>
<td>4.2622</td>
<td>-30.955</td>
<td>1.4</td>
</tr>
<tr>
<td>8</td>
<td>67.5</td>
<td>4.2851</td>
<td>-31.1537</td>
<td>1.6</td>
</tr>
<tr>
<td>9</td>
<td>67.5</td>
<td>4.3997</td>
<td>-32.1471</td>
<td>2.6</td>
</tr>
<tr>
<td>10</td>
<td>67.5</td>
<td>4.5143</td>
<td>-33.1405</td>
<td>3.6</td>
</tr>
<tr>
<td>11</td>
<td>67.5</td>
<td>4.6289</td>
<td>-34.1339</td>
<td>4.6</td>
</tr>
<tr>
<td>12</td>
<td>67.5</td>
<td>4.9154</td>
<td>-36.6175</td>
<td>7.1</td>
</tr>
<tr>
<td>13</td>
<td>67.5</td>
<td>5.2018</td>
<td>-39.101</td>
<td>9.6</td>
</tr>
<tr>
<td>14</td>
<td>67.5</td>
<td>5.4883</td>
<td>-41.5845</td>
<td>12.1</td>
</tr>
<tr>
<td>15</td>
<td>67.5</td>
<td>5.7748</td>
<td>-44.0681</td>
<td>14.6</td>
</tr>
</tbody>
</table>
Tabelle A.5 - Koordinaten der LDA-Messlinien 4 bis 6 für die Traversierung

<table>
<thead>
<tr>
<th>Messpunkt Nr.</th>
<th>x-Richtung [mm]</th>
<th>y-Richtung [mm]</th>
<th>z-Richtung [mm]</th>
<th>Wandabstand [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>67.5</td>
<td>9.1904</td>
<td>-28.5743</td>
<td>0.2</td>
</tr>
<tr>
<td>2</td>
<td>67.5</td>
<td>9.2502</td>
<td>-28.7651</td>
<td>0.4</td>
</tr>
<tr>
<td>3</td>
<td>67.5</td>
<td>9.31</td>
<td>-28.956</td>
<td>0.6</td>
</tr>
<tr>
<td>4</td>
<td>67.5</td>
<td>9.3698</td>
<td>-29.1468</td>
<td>0.8</td>
</tr>
<tr>
<td>5</td>
<td>67.5</td>
<td>9.4296</td>
<td>-29.3376</td>
<td>1.0</td>
</tr>
<tr>
<td>6</td>
<td>67.5</td>
<td>9.4895</td>
<td>-29.5285</td>
<td>1.2</td>
</tr>
<tr>
<td>7</td>
<td>67.5</td>
<td>9.5493</td>
<td>-29.7193</td>
<td>1.4</td>
</tr>
<tr>
<td>8</td>
<td>67.5</td>
<td>9.8483</td>
<td>-30.6736</td>
<td>2.4</td>
</tr>
<tr>
<td>9</td>
<td>67.5</td>
<td>10.1473</td>
<td>-31.6278</td>
<td>3.4</td>
</tr>
<tr>
<td>10</td>
<td>67.5</td>
<td>10.4464</td>
<td>-32.5821</td>
<td>4.4</td>
</tr>
<tr>
<td>11</td>
<td>67.5</td>
<td>11.194</td>
<td>-34.9677</td>
<td>6.9</td>
</tr>
<tr>
<td>12</td>
<td>67.5</td>
<td>11.9416</td>
<td>-37.3533</td>
<td>9.4</td>
</tr>
<tr>
<td>13</td>
<td>67.5</td>
<td>12.6892</td>
<td>-39.7389</td>
<td>11.9</td>
</tr>
<tr>
<td>14</td>
<td>67.5</td>
<td>13.4368</td>
<td>-42.1245</td>
<td>14.4</td>
</tr>
</tbody>
</table>

Messlinie 5

<table>
<thead>
<tr>
<th>Messpunkt Nr.</th>
<th>x-Richtung [mm]</th>
<th>y-Richtung [mm]</th>
<th>z-Richtung [mm]</th>
<th>Wandabstand [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>67.5</td>
<td>11.539</td>
<td>-27.5946</td>
<td>0.2</td>
</tr>
<tr>
<td>2</td>
<td>67.5</td>
<td>11.6094</td>
<td>-27.7818</td>
<td>0.4</td>
</tr>
<tr>
<td>3</td>
<td>67.5</td>
<td>11.6798</td>
<td>-27.969</td>
<td>0.6</td>
</tr>
<tr>
<td>4</td>
<td>67.5</td>
<td>11.7503</td>
<td>-28.1562</td>
<td>0.8</td>
</tr>
<tr>
<td>5</td>
<td>67.5</td>
<td>11.8207</td>
<td>-28.3434</td>
<td>1.0</td>
</tr>
<tr>
<td>6</td>
<td>67.5</td>
<td>11.8911</td>
<td>-28.5305</td>
<td>1.2</td>
</tr>
<tr>
<td>7</td>
<td>67.5</td>
<td>11.9616</td>
<td>-28.7177</td>
<td>1.4</td>
</tr>
<tr>
<td>8</td>
<td>67.5</td>
<td>12.032</td>
<td>-28.9049</td>
<td>1.6</td>
</tr>
<tr>
<td>9</td>
<td>67.5</td>
<td>12.3842</td>
<td>-29.8409</td>
<td>2.6</td>
</tr>
<tr>
<td>10</td>
<td>67.5</td>
<td>12.7363</td>
<td>-30.7768</td>
<td>3.6</td>
</tr>
<tr>
<td>11</td>
<td>67.5</td>
<td>13.0885</td>
<td>-31.7127</td>
<td>4.6</td>
</tr>
<tr>
<td>12</td>
<td>67.5</td>
<td>13.9689</td>
<td>-34.0526</td>
<td>7.1</td>
</tr>
<tr>
<td>13</td>
<td>67.5</td>
<td>14.8493</td>
<td>-36.3924</td>
<td>9.6</td>
</tr>
<tr>
<td>14</td>
<td>67.5</td>
<td>15.7298</td>
<td>-38.7323</td>
<td>12.1</td>
</tr>
<tr>
<td>15</td>
<td>67.5</td>
<td>16.6102</td>
<td>-41.0721</td>
<td>14.6</td>
</tr>
</tbody>
</table>

Messlinie 6

<table>
<thead>
<tr>
<th>Messpunkt Nr.</th>
<th>x-Richtung [mm]</th>
<th>y-Richtung [mm]</th>
<th>z-Richtung [mm]</th>
<th>Wandabstand [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>67.5</td>
<td>14.0309</td>
<td>-26.7868</td>
<td>0.2</td>
</tr>
<tr>
<td>2</td>
<td>67.5</td>
<td>14.1135</td>
<td>-26.9689</td>
<td>0.4</td>
</tr>
<tr>
<td>3</td>
<td>67.5</td>
<td>14.1961</td>
<td>-27.151</td>
<td>0.6</td>
</tr>
<tr>
<td>4</td>
<td>67.5</td>
<td>14.2787</td>
<td>-27.3332</td>
<td>0.8</td>
</tr>
<tr>
<td>5</td>
<td>67.5</td>
<td>14.3614</td>
<td>-27.5153</td>
<td>1.0</td>
</tr>
<tr>
<td>6</td>
<td>67.5</td>
<td>14.444</td>
<td>-27.6974</td>
<td>1.2</td>
</tr>
<tr>
<td>7</td>
<td>67.5</td>
<td>14.5266</td>
<td>-27.8796</td>
<td>1.4</td>
</tr>
<tr>
<td>8</td>
<td>67.5</td>
<td>14.9397</td>
<td>-28.7903</td>
<td>2.4</td>
</tr>
<tr>
<td>9</td>
<td>67.5</td>
<td>15.3528</td>
<td>-29.7009</td>
<td>3.4</td>
</tr>
<tr>
<td>10</td>
<td>67.5</td>
<td>15.7659</td>
<td>-30.6116</td>
<td>4.4</td>
</tr>
<tr>
<td>11</td>
<td>67.5</td>
<td>16.7987</td>
<td>-32.8883</td>
<td>6.9</td>
</tr>
<tr>
<td>12</td>
<td>67.5</td>
<td>18.8642</td>
<td>-37.4418</td>
<td>11.9</td>
</tr>
<tr>
<td>13</td>
<td>67.5</td>
<td>19.897</td>
<td>-39.7185</td>
<td>14.4</td>
</tr>
<tr>
<td>Messpunkt Nr.</td>
<td>x-Richtung [mm]</td>
<td>y-Richtung [mm]</td>
<td>z-Richtung [mm]</td>
<td>Wandabstand [mm]</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>1</td>
<td>67.5</td>
<td>16.359</td>
<td>-25.841</td>
<td>0.2</td>
</tr>
<tr>
<td>2</td>
<td>67.5</td>
<td>16.4493</td>
<td>-26.0195</td>
<td>0.4</td>
</tr>
<tr>
<td>3</td>
<td>67.5</td>
<td>16.5395</td>
<td>-26.1979</td>
<td>0.6</td>
</tr>
<tr>
<td>4</td>
<td>67.5</td>
<td>16.6298</td>
<td>-26.3764</td>
<td>0.8</td>
</tr>
<tr>
<td>5</td>
<td>67.5</td>
<td>16.7201</td>
<td>-26.5549</td>
<td>1.0</td>
</tr>
<tr>
<td>6</td>
<td>67.5</td>
<td>16.8103</td>
<td>-26.7334</td>
<td>1.2</td>
</tr>
<tr>
<td>7</td>
<td>67.5</td>
<td>17.2617</td>
<td>-27.6257</td>
<td>2.2</td>
</tr>
<tr>
<td>8</td>
<td>67.5</td>
<td>17.713</td>
<td>-28.5181</td>
<td>3.2</td>
</tr>
<tr>
<td>9</td>
<td>67.5</td>
<td>18.1644</td>
<td>-29.4104</td>
<td>4.2</td>
</tr>
<tr>
<td>10</td>
<td>67.5</td>
<td>19.2927</td>
<td>-31.6413</td>
<td>6.7</td>
</tr>
<tr>
<td>11</td>
<td>67.5</td>
<td>20.4211</td>
<td>-33.8722</td>
<td>9.2</td>
</tr>
<tr>
<td>12</td>
<td>67.5</td>
<td>21.5495</td>
<td>-36.103</td>
<td>11.7</td>
</tr>
<tr>
<td>13</td>
<td>67.5</td>
<td>22.6778</td>
<td>-38.3339</td>
<td>14.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Messlinie 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Messlinie 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
</tbody>
</table>
Tabelle A.7 - Koordinaten der LDA-Messlinien 10 bis 12 für die Traversierung

<table>
<thead>
<tr>
<th>Messpunkt Nr.</th>
<th>x-Richtung [mm]</th>
<th>y-Richtung [mm]</th>
<th>z-Richtung [mm]</th>
<th>Wandabstand [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>67.5</td>
<td>22.7595</td>
<td>-21.3664</td>
<td>0.2</td>
</tr>
<tr>
<td>2</td>
<td>67.5</td>
<td>22.8872</td>
<td>-21.5204</td>
<td>0.4</td>
</tr>
<tr>
<td>3</td>
<td>67.5</td>
<td>23.0148</td>
<td>-21.6744</td>
<td>0.6</td>
</tr>
<tr>
<td>4</td>
<td>67.5</td>
<td>23.1424</td>
<td>-21.8284</td>
<td>0.8</td>
</tr>
<tr>
<td>5</td>
<td>67.5</td>
<td>23.27</td>
<td>-21.9824</td>
<td>1.0</td>
</tr>
<tr>
<td>6</td>
<td>67.5</td>
<td>23.3976</td>
<td>-22.1364</td>
<td>1.2</td>
</tr>
<tr>
<td>7</td>
<td>67.5</td>
<td>23.5252</td>
<td>-22.2904</td>
<td>1.4</td>
</tr>
<tr>
<td>8</td>
<td>67.5</td>
<td>24.1633</td>
<td>-23.0603</td>
<td>2.4</td>
</tr>
<tr>
<td>9</td>
<td>67.5</td>
<td>24.8014</td>
<td>-23.8303</td>
<td>3.4</td>
</tr>
<tr>
<td>10</td>
<td>67.5</td>
<td>25.4395</td>
<td>-24.6003</td>
<td>4.4</td>
</tr>
<tr>
<td>11</td>
<td>67.5</td>
<td>27.0348</td>
<td>-26.5252</td>
<td>6.9</td>
</tr>
<tr>
<td>12</td>
<td>67.5</td>
<td>28.63</td>
<td>-28.45</td>
<td>9.4</td>
</tr>
<tr>
<td>13</td>
<td>67.5</td>
<td>30.2253</td>
<td>-30.3749</td>
<td>11.9</td>
</tr>
<tr>
<td>14</td>
<td>67.5</td>
<td>31.8205</td>
<td>-32.2998</td>
<td>14.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Messpunkt Nr.</th>
<th>x-Richtung [mm]</th>
<th>y-Richtung [mm]</th>
<th>z-Richtung [mm]</th>
<th>Wandabstand [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>67.5</td>
<td>24.5943</td>
<td>-19.6292</td>
<td>0.2</td>
</tr>
<tr>
<td>2</td>
<td>67.5</td>
<td>24.7234</td>
<td>-19.7819</td>
<td>0.4</td>
</tr>
<tr>
<td>3</td>
<td>67.5</td>
<td>24.8525</td>
<td>-19.9347</td>
<td>0.6</td>
</tr>
<tr>
<td>4</td>
<td>67.5</td>
<td>24.9816</td>
<td>-20.0875</td>
<td>0.8</td>
</tr>
<tr>
<td>5</td>
<td>67.5</td>
<td>25.1107</td>
<td>-20.2402</td>
<td>1.0</td>
</tr>
<tr>
<td>6</td>
<td>67.5</td>
<td>25.2398</td>
<td>-20.393</td>
<td>1.2</td>
</tr>
<tr>
<td>7</td>
<td>67.5</td>
<td>25.3689</td>
<td>-20.5457</td>
<td>1.4</td>
</tr>
<tr>
<td>8</td>
<td>67.5</td>
<td>25.498</td>
<td>-20.6985</td>
<td>1.6</td>
</tr>
<tr>
<td>9</td>
<td>67.5</td>
<td>26.1434</td>
<td>-21.4623</td>
<td>2.6</td>
</tr>
<tr>
<td>10</td>
<td>67.5</td>
<td>26.7889</td>
<td>-22.2261</td>
<td>3.6</td>
</tr>
<tr>
<td>11</td>
<td>67.5</td>
<td>27.4344</td>
<td>-22.9899</td>
<td>4.6</td>
</tr>
<tr>
<td>12</td>
<td>67.5</td>
<td>29.048</td>
<td>-24.8994</td>
<td>7.1</td>
</tr>
<tr>
<td>13</td>
<td>67.5</td>
<td>30.6616</td>
<td>-26.8089</td>
<td>9.6</td>
</tr>
<tr>
<td>14</td>
<td>67.5</td>
<td>32.2753</td>
<td>-28.7184</td>
<td>12.1</td>
</tr>
<tr>
<td>15</td>
<td>67.5</td>
<td>33.8889</td>
<td>-30.6278</td>
<td>14.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Messpunkt Nr.</th>
<th>x-Richtung [mm]</th>
<th>y-Richtung [mm]</th>
<th>z-Richtung [mm]</th>
<th>Wandabstand [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>67.5</td>
<td>26.6598</td>
<td>-17.832</td>
<td>0.2</td>
</tr>
<tr>
<td>2</td>
<td>67.5</td>
<td>26.8053</td>
<td>-17.9692</td>
<td>0.4</td>
</tr>
<tr>
<td>3</td>
<td>67.5</td>
<td>26.9508</td>
<td>-18.1064</td>
<td>0.6</td>
</tr>
<tr>
<td>4</td>
<td>67.5</td>
<td>27.0963</td>
<td>-18.2437</td>
<td>0.8</td>
</tr>
<tr>
<td>5</td>
<td>67.5</td>
<td>27.2418</td>
<td>-18.3809</td>
<td>1.0</td>
</tr>
<tr>
<td>6</td>
<td>67.5</td>
<td>27.3874</td>
<td>-18.5181</td>
<td>1.2</td>
</tr>
<tr>
<td>7</td>
<td>67.5</td>
<td>28.1149</td>
<td>-19.2042</td>
<td>2.2</td>
</tr>
<tr>
<td>8</td>
<td>67.5</td>
<td>28.8424</td>
<td>-19.8902</td>
<td>3.2</td>
</tr>
<tr>
<td>9</td>
<td>67.5</td>
<td>29.57</td>
<td>-20.5763</td>
<td>4.2</td>
</tr>
<tr>
<td>10</td>
<td>67.5</td>
<td>31.3888</td>
<td>-22.2915</td>
<td>6.7</td>
</tr>
<tr>
<td>11</td>
<td>67.5</td>
<td>33.2076</td>
<td>-24.0067</td>
<td>9.2</td>
</tr>
<tr>
<td>12</td>
<td>67.5</td>
<td>35.0265</td>
<td>-25.7219</td>
<td>11.7</td>
</tr>
<tr>
<td>13</td>
<td>67.5</td>
<td>36.8453</td>
<td>-27.437</td>
<td>14.2</td>
</tr>
</tbody>
</table>
Tabelle A.8 - Koordinaten der LDA-Messlinien 12a bis 13a für die Traversierung

<table>
<thead>
<tr>
<th>Nr.</th>
<th>x-Richtung [mm]</th>
<th>y-Richtung [mm]</th>
<th>z-Richtung [mm]</th>
<th>Wandabstand [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>67.5</td>
<td>28.3881</td>
<td>-15.9063</td>
<td>0.2</td>
</tr>
<tr>
<td>2</td>
<td>67.5</td>
<td>28.5382</td>
<td>-16.0386</td>
<td>0.4</td>
</tr>
<tr>
<td>3</td>
<td>67.5</td>
<td>28.6882</td>
<td>-16.1708</td>
<td>0.6</td>
</tr>
<tr>
<td>4</td>
<td>67.5</td>
<td>28.8383</td>
<td>-16.303</td>
<td>0.8</td>
</tr>
<tr>
<td>5</td>
<td>67.5</td>
<td>28.9883</td>
<td>-16.4352</td>
<td>1.0</td>
</tr>
<tr>
<td>6</td>
<td>67.5</td>
<td>29.1384</td>
<td>-16.5675</td>
<td>1.2</td>
</tr>
<tr>
<td>7</td>
<td>67.5</td>
<td>29.8887</td>
<td>-17.2286</td>
<td>2.2</td>
</tr>
<tr>
<td>8</td>
<td>67.5</td>
<td>30.639</td>
<td>-17.8897</td>
<td>3.2</td>
</tr>
<tr>
<td>9</td>
<td>67.5</td>
<td>31.3892</td>
<td>-18.5508</td>
<td>4.2</td>
</tr>
<tr>
<td>10</td>
<td>67.5</td>
<td>33.2649</td>
<td>-20.2036</td>
<td>6.7</td>
</tr>
<tr>
<td>11</td>
<td>67.5</td>
<td>35.1407</td>
<td>-21.8564</td>
<td>9.2</td>
</tr>
<tr>
<td>12</td>
<td>67.5</td>
<td>37.0164</td>
<td>-23.5092</td>
<td>11.7</td>
</tr>
<tr>
<td>13</td>
<td>67.5</td>
<td>38.9956</td>
<td>-25.162</td>
<td>14.2</td>
</tr>
</tbody>
</table>

Messlinie 13

<table>
<thead>
<tr>
<th>Nr.</th>
<th>x-Richtung [mm]</th>
<th>y-Richtung [mm]</th>
<th>z-Richtung [mm]</th>
<th>Wandabstand [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>67.5</td>
<td>30.1155</td>
<td>-13.9799</td>
<td>0.2</td>
</tr>
<tr>
<td>2</td>
<td>67.5</td>
<td>30.27</td>
<td>-14.107</td>
<td>0.4</td>
</tr>
<tr>
<td>3</td>
<td>67.5</td>
<td>30.4244</td>
<td>-14.2341</td>
<td>0.6</td>
</tr>
<tr>
<td>4</td>
<td>67.5</td>
<td>30.5788</td>
<td>-14.3612</td>
<td>0.8</td>
</tr>
<tr>
<td>5</td>
<td>67.5</td>
<td>30.7333</td>
<td>-14.4882</td>
<td>1.0</td>
</tr>
<tr>
<td>6</td>
<td>67.5</td>
<td>30.8877</td>
<td>-14.6153</td>
<td>1.2</td>
</tr>
<tr>
<td>7</td>
<td>67.5</td>
<td>31.6599</td>
<td>-15.2507</td>
<td>2.2</td>
</tr>
<tr>
<td>8</td>
<td>67.5</td>
<td>32.4321</td>
<td>-15.8861</td>
<td>3.2</td>
</tr>
<tr>
<td>9</td>
<td>67.5</td>
<td>33.2042</td>
<td>-16.5215</td>
<td>4.2</td>
</tr>
<tr>
<td>10</td>
<td>67.5</td>
<td>35.1347</td>
<td>-18.11</td>
<td>6.7</td>
</tr>
<tr>
<td>11</td>
<td>67.5</td>
<td>37.0651</td>
<td>-19.6986</td>
<td>9.2</td>
</tr>
<tr>
<td>12</td>
<td>67.5</td>
<td>38.9956</td>
<td>-21.2871</td>
<td>11.7</td>
</tr>
<tr>
<td>13</td>
<td>67.5</td>
<td>40.926</td>
<td>-22.8756</td>
<td>14.2</td>
</tr>
</tbody>
</table>

Messlinie 13a (nur mit Wirbelgeneratoren)

<table>
<thead>
<tr>
<th>Nr.</th>
<th>x-Richtung [mm]</th>
<th>y-Richtung [mm]</th>
<th>z-Richtung [mm]</th>
<th>Wandabstand [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>67.5</td>
<td>31.6951</td>
<td>-11.873</td>
<td>0.2</td>
</tr>
<tr>
<td>2</td>
<td>67.5</td>
<td>31.8552</td>
<td>-11.9928</td>
<td>0.4</td>
</tr>
<tr>
<td>3</td>
<td>67.5</td>
<td>32.0153</td>
<td>-12.1126</td>
<td>0.6</td>
</tr>
<tr>
<td>4</td>
<td>67.5</td>
<td>32.1755</td>
<td>-12.2325</td>
<td>0.8</td>
</tr>
<tr>
<td>5</td>
<td>67.5</td>
<td>32.3356</td>
<td>-12.3523</td>
<td>1.0</td>
</tr>
<tr>
<td>6</td>
<td>67.5</td>
<td>32.4958</td>
<td>-12.4721</td>
<td>1.2</td>
</tr>
<tr>
<td>7</td>
<td>67.5</td>
<td>33.2964</td>
<td>-13.0712</td>
<td>2.2</td>
</tr>
<tr>
<td>8</td>
<td>67.5</td>
<td>34.0971</td>
<td>-13.6703</td>
<td>3.2</td>
</tr>
<tr>
<td>9</td>
<td>67.5</td>
<td>34.8978</td>
<td>-14.2694</td>
<td>4.2</td>
</tr>
<tr>
<td>10</td>
<td>67.5</td>
<td>36.8995</td>
<td>-15.7671</td>
<td>6.7</td>
</tr>
<tr>
<td>11</td>
<td>67.5</td>
<td>38.9012</td>
<td>-17.2648</td>
<td>9.2</td>
</tr>
<tr>
<td>12</td>
<td>67.5</td>
<td>40.9029</td>
<td>-18.7626</td>
<td>11.7</td>
</tr>
<tr>
<td>13</td>
<td>67.5</td>
<td>42.9046</td>
<td>-20.2603</td>
<td>14.2</td>
</tr>
</tbody>
</table>
Tabelle A.9 - Koordinaten der LDA-Messlinien 14 bis 16 für die Traversierung

Messlinie 14

<table>
<thead>
<tr>
<th>Messpunkt Nr.</th>
<th>x-Richtung [mm]</th>
<th>y-Richtung [mm]</th>
<th>z-Richtung [mm]</th>
<th>Wandabstand [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>67.5</td>
<td>33.2729</td>
<td>-9.7648</td>
<td>0.2</td>
</tr>
<tr>
<td>2</td>
<td>67.5</td>
<td>33.4384</td>
<td>-9.8771</td>
<td>0.4</td>
</tr>
<tr>
<td>3</td>
<td>67.5</td>
<td>33.6039</td>
<td>-9.9894</td>
<td>0.6</td>
</tr>
<tr>
<td>4</td>
<td>67.5</td>
<td>33.7694</td>
<td>-10.1017</td>
<td>0.8</td>
</tr>
<tr>
<td>5</td>
<td>67.5</td>
<td>33.9349</td>
<td>-10.214</td>
<td>1.0</td>
</tr>
<tr>
<td>6</td>
<td>67.5</td>
<td>34.1004</td>
<td>-10.3263</td>
<td>1.2</td>
</tr>
<tr>
<td>7</td>
<td>67.5</td>
<td>34.9279</td>
<td>-10.8878</td>
<td>2.2</td>
</tr>
<tr>
<td>8</td>
<td>67.5</td>
<td>35.7553</td>
<td>-11.4493</td>
<td>3.2</td>
</tr>
<tr>
<td>9</td>
<td>67.5</td>
<td>36.5828</td>
<td>-12.0108</td>
<td>4.2</td>
</tr>
<tr>
<td>10</td>
<td>67.5</td>
<td>38.6515</td>
<td>-13.4146</td>
<td>6.7</td>
</tr>
<tr>
<td>11</td>
<td>67.5</td>
<td>40.7202</td>
<td>-14.8184</td>
<td>9.2</td>
</tr>
<tr>
<td>12</td>
<td>67.5</td>
<td>42.7888</td>
<td>-16.2221</td>
<td>11.7</td>
</tr>
<tr>
<td>13</td>
<td>67.5</td>
<td>44.8575</td>
<td>-17.6259</td>
<td>14.2</td>
</tr>
</tbody>
</table>

Messlinie 15

<table>
<thead>
<tr>
<th>Messpunkt Nr.</th>
<th>x-Richtung [mm]</th>
<th>y-Richtung [mm]</th>
<th>z-Richtung [mm]</th>
<th>Wandabstand [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>67.5</td>
<td>36.0459</td>
<td>-5.4884</td>
<td>0.2</td>
</tr>
<tr>
<td>2</td>
<td>67.5</td>
<td>36.214</td>
<td>-5.5967</td>
<td>0.4</td>
</tr>
<tr>
<td>3</td>
<td>67.5</td>
<td>36.3821</td>
<td>-5.705</td>
<td>0.6</td>
</tr>
<tr>
<td>4</td>
<td>67.5</td>
<td>36.5502</td>
<td>-5.8133</td>
<td>0.8</td>
</tr>
<tr>
<td>5</td>
<td>67.5</td>
<td>36.7184</td>
<td>-5.9216</td>
<td>1.0</td>
</tr>
<tr>
<td>6</td>
<td>67.5</td>
<td>36.8865</td>
<td>-6.0299</td>
<td>1.2</td>
</tr>
<tr>
<td>7</td>
<td>67.5</td>
<td>37.7272</td>
<td>-6.5715</td>
<td>2.2</td>
</tr>
<tr>
<td>8</td>
<td>67.5</td>
<td>38.5678</td>
<td>-7.1131</td>
<td>3.2</td>
</tr>
<tr>
<td>9</td>
<td>67.5</td>
<td>39.4085</td>
<td>-7.6546</td>
<td>4.2</td>
</tr>
<tr>
<td>10</td>
<td>67.5</td>
<td>41.5101</td>
<td>-9.0085</td>
<td>6.7</td>
</tr>
<tr>
<td>11</td>
<td>67.5</td>
<td>43.6118</td>
<td>-10.3624</td>
<td>9.2</td>
</tr>
<tr>
<td>12</td>
<td>67.5</td>
<td>45.7135</td>
<td>-11.7163</td>
<td>11.7</td>
</tr>
<tr>
<td>13</td>
<td>67.5</td>
<td>47.8151</td>
<td>-13.0702</td>
<td>14.2</td>
</tr>
</tbody>
</table>

Messlinie 16

<table>
<thead>
<tr>
<th>Messpunkt Nr.</th>
<th>x-Richtung [mm]</th>
<th>y-Richtung [mm]</th>
<th>z-Richtung [mm]</th>
<th>Wandabstand [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>67.5</td>
<td>38.9601</td>
<td>-1.4397</td>
<td>0.2</td>
</tr>
<tr>
<td>2</td>
<td>67.5</td>
<td>39.382</td>
<td>-1.708</td>
<td>0.7</td>
</tr>
<tr>
<td>3</td>
<td>67.5</td>
<td>39.8039</td>
<td>-1.9764</td>
<td>1.2</td>
</tr>
<tr>
<td>4</td>
<td>67.5</td>
<td>40.2258</td>
<td>-2.2447</td>
<td>1.7</td>
</tr>
<tr>
<td>5</td>
<td>67.5</td>
<td>40.6476</td>
<td>-2.5131</td>
<td>2.2</td>
</tr>
<tr>
<td>6</td>
<td>67.5</td>
<td>42.3352</td>
<td>-3.5865</td>
<td>4.2</td>
</tr>
<tr>
<td>7</td>
<td>67.5</td>
<td>44.0227</td>
<td>-4.6599</td>
<td>6.2</td>
</tr>
<tr>
<td>8</td>
<td>67.5</td>
<td>45.7102</td>
<td>-5.7333</td>
<td>8.2</td>
</tr>
<tr>
<td>9</td>
<td>67.5</td>
<td>47.3978</td>
<td>-6.8068</td>
<td>10.2</td>
</tr>
<tr>
<td>10</td>
<td>67.5</td>
<td>49.0853</td>
<td>-7.8802</td>
<td>12.2</td>
</tr>
<tr>
<td>11</td>
<td>67.5</td>
<td>50.7728</td>
<td>-8.9536</td>
<td>14.2</td>
</tr>
<tr>
<td>12</td>
<td>67.5</td>
<td>52.4604</td>
<td>-10.027</td>
<td>16.2</td>
</tr>
<tr>
<td>13</td>
<td>67.5</td>
<td>54.1479</td>
<td>-11.1004</td>
<td>18.2</td>
</tr>
<tr>
<td>14</td>
<td>67.5</td>
<td>55.8354</td>
<td>-12.1739</td>
<td>20.2</td>
</tr>
<tr>
<td>Nr.</td>
<td>Messpunkt</td>
<td>x-Richtung [mm]</td>
<td>y-Richtung [mm]</td>
<td>z-Richtung [mm]</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>1</td>
<td>67.5</td>
<td>44.5236</td>
<td>6.5723</td>
<td>0.2</td>
</tr>
<tr>
<td>2</td>
<td>67.5</td>
<td>44.9321</td>
<td>6.2841</td>
<td>0.7</td>
</tr>
<tr>
<td>3</td>
<td>67.5</td>
<td>45.3407</td>
<td>5.9959</td>
<td>1.2</td>
</tr>
<tr>
<td>4</td>
<td>67.5</td>
<td>45.7493</td>
<td>5.7076</td>
<td>1.7</td>
</tr>
<tr>
<td>5</td>
<td>67.5</td>
<td>46.1579</td>
<td>5.4194</td>
<td>2.2</td>
</tr>
<tr>
<td>6</td>
<td>67.5</td>
<td>47.7921</td>
<td>4.2666</td>
<td>4.2</td>
</tr>
<tr>
<td>7</td>
<td>67.5</td>
<td>49.4264</td>
<td>3.1137</td>
<td>6.2</td>
</tr>
<tr>
<td>8</td>
<td>67.5</td>
<td>51.0607</td>
<td>1.9608</td>
<td>8.2</td>
</tr>
<tr>
<td>9</td>
<td>67.5</td>
<td>52.695</td>
<td>0.808</td>
<td>10.2</td>
</tr>
<tr>
<td>10</td>
<td>67.5</td>
<td>54.3293</td>
<td>-0.3449</td>
<td>12.2</td>
</tr>
<tr>
<td>11</td>
<td>67.5</td>
<td>55.9636</td>
<td>-1.4978</td>
<td>14.2</td>
</tr>
<tr>
<td>12</td>
<td>67.5</td>
<td>57.597887</td>
<td>-2.65063298</td>
<td>16.2</td>
</tr>
<tr>
<td>13</td>
<td>67.5</td>
<td>59.2321768</td>
<td>-3.80349761</td>
<td>18.2</td>
</tr>
<tr>
<td>14</td>
<td>67.5</td>
<td>60.8664666</td>
<td>-4.95636225</td>
<td>20.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Messpunkt</th>
<th>x-Richtung [mm]</th>
<th>y-Richtung [mm]</th>
<th>z-Richtung [mm]</th>
<th>Wandabstand [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>67.5</td>
<td>51.1986</td>
<td>13.3487</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>67.5</td>
<td>51.5547</td>
<td>12.9977</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>67.5</td>
<td>51.9109</td>
<td>12.6468</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>67.5</td>
<td>52.267</td>
<td>12.2958</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>67.5</td>
<td>52.6231</td>
<td>11.9449</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>67.5</td>
<td>52.9793</td>
<td>11.5939</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>67.5</td>
<td>54.4038</td>
<td>10.1901</td>
<td>4.7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>67.5</td>
<td>55.8284</td>
<td>8.7863</td>
<td>6.7</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>67.5</td>
<td>57.2529</td>
<td>7.3825</td>
<td>8.7</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>67.5</td>
<td>58.6774</td>
<td>5.9787</td>
<td>10.7</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>67.5</td>
<td>60.102</td>
<td>4.5749</td>
<td>12.7</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>67.5</td>
<td>61.5265</td>
<td>3.1711</td>
<td>14.7</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>67.5</td>
<td>62.9511</td>
<td>1.7672</td>
<td>16.7</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>67.5</td>
<td>64.3756</td>
<td>0.3634</td>
<td>18.7</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>67.5</td>
<td>66.1563</td>
<td>-1.3913</td>
<td>21.2</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>67.5</td>
<td>67.937</td>
<td>-3.1461</td>
<td>23.7</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Messpunkt</th>
<th>x-Richtung [mm]</th>
<th>y-Richtung [mm]</th>
<th>z-Richtung [mm]</th>
<th>Wandabstand [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>67.5</td>
<td>66.93</td>
<td>24.92</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>67.5</td>
<td>67.27</td>
<td>23.98</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>67.5</td>
<td>67.61</td>
<td>23.04</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>67.5</td>
<td>67.96</td>
<td>22.1</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>67.5</td>
<td>68.3</td>
<td>21.16</td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>67.5</td>
<td>69.15</td>
<td>18.81</td>
<td>6.7</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>67.5</td>
<td>70.01</td>
<td>16.47</td>
<td>9.2</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>67.5</td>
<td>70.86</td>
<td>14.12</td>
<td>11.7</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>67.5</td>
<td>71.72</td>
<td>11.77</td>
<td>14.2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>67.5</td>
<td>72.57</td>
<td>9.42</td>
<td>16.7</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>67.5</td>
<td>73.43</td>
<td>7.07</td>
<td>19.2</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>67.5</td>
<td>74.28</td>
<td>4.72</td>
<td>21.7</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>67.5</td>
<td>75.14</td>
<td>2.37</td>
<td>24.2</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>67.5</td>
<td>75.99</td>
<td>0.02</td>
<td>26.7</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>67.5</td>
<td>76.85</td>
<td>-2.33</td>
<td>29.2</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>67.5</td>
<td>77.7</td>
<td>-4.68</td>
<td>31.7</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>67.5</td>
<td>78.56</td>
<td>-7.03</td>
<td>34.2</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>67.5</td>
<td>79.41</td>
<td>-9.38</td>
<td>36.7</td>
<td></td>
</tr>
</tbody>
</table>
A.3 Koordinaten der Messpunkte der Laservibrometer-Messung

Tabelle A.11 - Koordinaten der Laservibrometer-Messung für die Traversierung

<table>
<thead>
<tr>
<th>Messpunkt Nr.</th>
<th>y-Richtung [mm]</th>
<th>z-Richtung [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-9.98</td>
<td>-30.95</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>-30.4</td>
</tr>
<tr>
<td>3</td>
<td>4.1247</td>
<td>-29.7629</td>
</tr>
<tr>
<td>4</td>
<td>9.1306</td>
<td>-28.3834</td>
</tr>
<tr>
<td>5</td>
<td>11.4685</td>
<td>-27.4074</td>
</tr>
<tr>
<td>6</td>
<td>13.9482</td>
<td>-26.6046</td>
</tr>
<tr>
<td>7</td>
<td>16.2887</td>
<td>-25.6625</td>
</tr>
<tr>
<td>8</td>
<td>18.4586</td>
<td>-24.2643</td>
</tr>
<tr>
<td>9</td>
<td>20.7061</td>
<td>-23.0481</td>
</tr>
<tr>
<td>10</td>
<td>22.6319</td>
<td>-21.2124</td>
</tr>
<tr>
<td>11</td>
<td>24.4652</td>
<td>-19.4764</td>
</tr>
<tr>
<td>12</td>
<td>26.5143</td>
<td>-17.6948</td>
</tr>
<tr>
<td>13</td>
<td>29.9611</td>
<td>-13.8528</td>
</tr>
<tr>
<td>14</td>
<td>33.1074</td>
<td>-9.6525</td>
</tr>
<tr>
<td>15</td>
<td>35.8777</td>
<td>-5.3801</td>
</tr>
<tr>
<td>16</td>
<td>38.5382</td>
<td>-1.1713</td>
</tr>
<tr>
<td>17</td>
<td>44.35</td>
<td>6.12</td>
</tr>
<tr>
<td>18</td>
<td>50.8425</td>
<td>13.6996</td>
</tr>
<tr>
<td>19</td>
<td>66.59</td>
<td>25.86</td>
</tr>
<tr>
<td>20</td>
<td>81.5809</td>
<td>37.5496</td>
</tr>
</tbody>
</table>
Anhang B Inhaltsverzeichnis der beigelegten CD

Die beigelegte CD enthält eine PDF-Version der Diplomarbeit. Zusätzlich sind alle verwendeten Fotos und Bilder nach Kapiteln geordnet darauf zu finden. Es sind außerdem zusätzliche Messergebnisse wie die Filme der Ölanstriche sowie der Schlierenvisualisierung enthalten. Der Ordner Koordinaten (Messpunkte, Kanalkonturen) enthält alle für die Messungen (LDA, Laservibrometer, Druckmessung) relevanten Koordinaten.

Die CD ist folgendermaßen gegliedert:

- **Abbildungen**
 - Kapitel 1
 - Kapitel 2
 - Kapitel 3
 - Kapitel 4
 - Kapitel 5

- **Filme**
 - Ölanstrich
 - Schlierenvisualisierung
 - Koordinaten (Messpunkte, Kanalkonturen)
 - LDA-Ergebnisse