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Abstract 
 

In this study, the evolution of the unsteady trailing edge vortex 
street downstream a linear turbine cascade is experimentally and 
computationally investigated. In a transonic cascade test stand, Laser 
Doppler velocimeter (LDV) measurements were acquired in several 
axial planes downstream of the blade trailing edge. In addition, direct 
detection of density changes near the trailing edge provide information 
about the frequency of a vortex shedding cycle. 

A two-dimensional upwind-biased Navier-Stokes solver has then 
been used to perform a series of steady and unsteady cascade 
simulations, allowing an in-depth study into the mechanisms of the 
trailing edge vortex shedding.  

The numerical results are compared with the experimental data to 
test the quality of the numerical simulations. 
 
Introduction 
 

Vortex shedding, as excitation for acoustic resonances and 
structural vibrations, has been an intriguing and challenging flow 
problem ever since the early works of von Karman on this subject. The 
literature on vortex shedding from cylinders and flat plates is abundant, 
but the particular problem of vortex shedding from turbomachinery 
bladings has received only limited attention (e.g. Sieverding and 
Heinemann (1990), Cicatelli and Sieverding (1995)).  

Nevertheless, the wake flow together with the inherent unsteadiness 
caused by interaction between stator and rotor has a significant impact 
on efficiency and performance. Wakes generated by a blade row travel 
downstream and interact with the succeeding blade rows affecting 
pressure distribution, heat transfer and boundary layer development. The 
correct prediction of the wake evolution is necessary for any trust-
worthy calculation of blade row interference effects. 

Experimental investigations of the far wake mean flow 
characteristics by means of wake traverse measurements are commonly 
carried out during turbine cascade testing. Less common are systematic 
experimental studies of mean velocity and turbulence quantities in the 
near wake or in the trailing edge region. Even less investigated are the 
unsteady characteristics of the flow in the wake of turbine cascades in 
spite of their practical importance and conceptual relevance (Zunino et. 
al., 1997).  

More recently, some experimental studies concentrating on this 
phenomenon were carried out, e.g. Zunino et. al. (1997) developed a 
phase locked ensemble averaging technique for separating periodic and 
random fluctuations and used a triple decomposition to determine the 
instantaneous velocity to identify periodic organized structures. Cicatelli 
and Sieverding, 1997 investigated the effect of vortex shedding on the 
unsteady pressure distribution around the trailing edge of a turbine 
blade. 

Numerical predictions to study the influence of wakes on 
aerodynamic losses and heat transfer need a correct modeling of wake 
propagation and wake decay in the axial gap for multi-blade 
calculations. As e.g. Luo and Lakshminarayana (1997) showed, the 
prediction of the wake flow depends largely on the turbulence modeling, 
because it influences blade boundary layers and the wake mixing 
mechanism. Sondak and Dorney, 1999 simulated vortex shedding in a 
turbine cascade with a modification to the algebraic Baldwin and Lomax 
(1978) turbulence model for improved solutions in regions of separated 
flows and free shear layers and found reasonable good agreement with 
the experimental pressure data of Cicatelli and Sieverding, 1997. Currie 
and Carscallen, 1998 used a two equation turbulence model to predict 
the vortex shedding in a transonic cascade and found that the total 
pressure loss coefficient predicted by time dependent simulations was 
significantly higher than the steady state value. These studies indicate, 
that an unsteady computational approach is necessary to properly 
capture the complexity of the trailing edge flow. 

Investigations of the wake flow downstream of a linear turbine 
cascade by Sanz et. al., (1998) revealed large discrepancies between 
LDV-measurement and numerical results, obtained with a two-
dimensional upwind-biased Navier-Stokes solver using two different 
turbulence models. They concluded that a time-accurate computation 
may be necessary to accurately capture the wake flow field.  

The interest of the present contribution is therefore specifically 
directed towards the investigation of the unsteady trailing edge vortex 
shedding downstream of a linear turbine cascade by means of an 
unsteady Navier-Stokes solver and by means of LDV measurements 
done in several axial planes downstream of the blade trailing edge. In 
addition, direct detection of density changes near the trailing edge 
provide information about the frequency of a vortex shedding cycle.  

The originality of the present effort can be found in the application 
of two different turbulence models which are incorporated into an 
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unsteady Navier-Stokes code, solving the Reynolds-averaged Navier-
Stokes equations with an implicit time-marching finite volume method 
around a two-dimensional blade cascade. A series of steady and 
unsteady computations has been performed, allowing an in-depth study 
into the mechanisms of the trailing edge vortex shedding.  

The analysis of the results and the comparison with the 
experimental data will indicate some guideline about the quality of the 
numerical simulations. 

 
Experimental Facility 
 

The experiment was carried out in a linear cascade wind tunnel 
capable of supersonic inlet flow which is described in detail by Sanz et 
al. (1998). The turbine cascade consists of 7 blades as described by 
Kiock et al. (1986). The most important geometrical characteristics of 
the blade row and the main flow parameters are summarised in table 1.  

 
Table 1: Blade geometry and flow conditions: 

Blade number   7 
Chord length   58 mm 
Axial chord length  48.4 mm 
Trailing edge thickness  2.9 mm 
Spacing   41.18 mm 
Span    100 mm 
Inlet flow angle   30° 
Inlet total pressure  1.413 bar 
Inlet total temperature  308.45 K 
Isentropic exit Mach number 0.7 
Exit Reynolds number  9.75⋅105 
Inlet turbulence intensity  5 % 

 
Experimental Setup. Glass windows of 15mm thickness are built in 

the side walls to allow optical access to the mid flow passage and to the 
inlet and exit region. The wake flow downstream of the trailing edge is 
measured with a Laser-Doppler Velocimeter (LDV). The measurement 
data in the wake are acquired at midspan at three axial planes located 
downstream of the cascade at x/cax = 0.037, 0.161 and 0.285 as 
described by Sanz et al (1998). The first plane is located in the trailing 
edge region of the wake, where the velocity defect is very large. The 
other planes are in the near wake region, where the wake defect is still in 
the order of the mean velocity and where blade geometry and loading 
are mainly influencing the wake. This classification is made according 
to Zaccaria and Lakshminarayana (1997). The distance of the third plane 
corresponds to the rotor-stator spacing of modern axial flow turbines. 

For some of the points within the wake, a Polytec laser vibrometer 
aligned to the LDV measurement volume was used to provide the 
frequency of the periodic density fluctuations in the wake (Mayrhofer 
and Woisetschläger , 2000).  

To monitor the uniformity of the inlet flow, seven static pressure taps 
are arranged across two passages at the inlet; two rows of static pressure 
taps are arranged at the exit. The three middle blades are also equipped 
with static pressure taps to control the periodicity of the flow, which can 
be set by a tailboard. From these readings we derived a maximum 
difference in the isentropic surface Mach number  of  0.01, which 
corresponds to about 1.4%. As pressure sensor we used a Scanivalve 
ZOC14NP/16Px-50psid calibrated by a dead weight tester to an 
accuracy of +/- 0.08%. Total pressure and total temperature are 
measured at the inlet by probes. 

The flow conditions in the experiment are subsonic as shown in 
table 1. The inlet turbulent kinetic energy k of 13.6 m2/s2 corresponds to 
a turbulence intensity Tu of 5 %.  

 

LDV-Data acquisition and Measurement Accuracy. Experimental 
data acquisition was done by a two-dimensional LDV system (DANTEC 
Fiberflow, BSA processors).  

According to the number of validated measuring signals, an error 
analysis is done based on the assumption of a Gaussian distribution of 
the velocity. The uncertainty for a 95 percent confidence level is for the 
mean velocity 2 percent inside and 0.1 percent outside the wake in the 
first measuring plane and 0.8 and 0.1 percent, respectively, for the other 
two planes. The uncertainty of the turbulence level as the standard 
deviation of the velocity is 3 percent inside and outside the wake in all 
three measuring planes.  
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Fig. 1: Velocity histogram from one LDV component in 
one position in the wake. The turbulent velocity fluctuations 
according to maximum and minimum velocity in the periodic 

motion are represented by their Gauss fits.  

            Nomenclature                                                                                                                                                                                                      -  
 

a0 speed of sound at stagnation  
r
n  outward unit vector   τij shear stresses 

c chord length   p static pressure   t time 
δij Kronecker delta   PS pressure side   T period of a vortex shedding cycle 
e total energy per unit volume  &q  heat flux    TE  trailing edge 
E inviscid flux vector   Q vector of conserved variables  Tu Turbulence Level 
H source term   ρ density    u,v,w,ui cartesian velocity components 
I identity matrix   R viscous flux vector   ′ui , ′v  velocity fluctuations 
k turbulent kinetic energy  RMS root mean square value  V computational cell volume 
λ time integration parameter  S computational cell interface  Ω flow vorticity 
LE leading edge   Str Strouhal number   

r
w  velocity vector 

lm mixing length   SS suction side   x,y,z,xi cartesian coordinates 
μ viscosity 
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Fig. 2: Velocity signal from one LDV component in one 

position in the wake showing the periodic fluctuations in the 
wake superimposed by the turbulent motion in the temporal 

domain 
 

For some positions within the wake region, the velocity histograms 
had been evaluated by two Gauss fits. In this region, for each velocity 
component two pronounced velocity distributions were observable 
caused by the periodic motion within the wake. These measurements 
enabled decomposition of the contributions of periodic RMS and 
turbulent RMS from the total RMS (s. Fig. 1). For this periodic flow 
analysis a high data rate (500-3000 Hz validated data only) had been 
used to record 120000 data samples per position traversed. 

For further investigations in the very near future it is planned to use 
the vibrometer signal to trigger the BSA processor. This trigger signal 
will then be used to sample the single doppler bursts within the period of 
the vortex shedding in order to more accurately reveal the mean and 
periodic characteristics of the flow. Preliminary results are displayed in 
Fig.2, which shows the velocity signal corresponding to the histogram 
presented in Fig.1 and indicating reasonable good agreement with the 
two Gauss fits.  
 
Numerical Approach 
 

Governing Equations. The compressible, Reynolds-averaged 
continuity-, momentum- and energy equation in integral form are used 
to model the fluid flow: 
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The pressure is related to the other flow quantities through the 
equation of state for a perfect gas. The shear stresses, τij , are divided 
into a laminar and a turbulent part. The laminar parts are given directly 
by  
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The turbulent stresses are calculated using the Boussinesq 
assumption, which relates the turbulent stress tensor with the mean 
strain-rate tensor by an eddy viscosity μt . 
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The eddy viscosity μt  is calculated using an appropriate turbulence 
model (see below). The heat-flux, &qi , is treated in a similar way 
according to Reynolds analogy. For these calculations a constant 
turbulent Prandtl number of Prt=0.9 is assumed. 
 

Turbulence Models. The eddy viscosity is modelled using the one-
equation turbulence model of Spalart and Allmaras (1994) and the low-
Reynolds-number k-ε model of Biswas and Fukuyama (1994). Both 
models were validated against simple flows, such as a flat plate 
boundary layer and showed good agreement with published 
experimental results (Artner, 1997, Gehrer and Jericha, 1999, Gehrer 
1999). 
 

One-Equation Turbulence Model of Spalart-Allmaras (1994). This 
model is based on a transport equation written for a variable ~μ  closely 
linked to the eddy viscosity μt. This equation was derived for flows in 
free air and therefore cannot consider higher free-stream turbulence 
levels. So the inflow value was set to ~ / .μ μ = 01 , according to Spalart 
and Allmaras (1994), which implies a very small eddy viscosity. At 
solid walls, ~μ  is set to zero while at the outlet boundary a simple 
extrapolation is used. In this investigation fully turbulent flow is 
assumed, so that the trip terms of the model are set to zero. 
 

Low Reynolds number k-ε model of Biswas and Fukuyama (1994). 
The main drawback of the proceeding model is that it does not depend 
upon turbulence properties as e.g. free stream turbulence. The use of 
field equations to describe characteristic turbulence scales is therefore at 
the origin of this second approach. Various low-Reynolds number k-ε 
models have been developed so far which differ through the use of 
different damping functions, constants and extra source terms (e.g., 
Biswas and Fukuyama, 1994). Also boundary conditions vary between 
some models. However, the Biswas and Fukuyama (1994) has been 
developed for transitional boundary layers and successfully used in 
turbomachinery applications (e.g. Gallus et al (1995), Lücke (1997)). 

The boundary conditions are k=0, ∂ε ∂/ y = 0  at solid walls, 
k=3Tu2w2/2, ε=Cμ

3/4k3/2/lm at the inlet and a simple extrapolation is used 
at the outlet boundary. Whereas the turbulence intensity Tu is mostly 
known from measurements, it is difficult to estimate the turbulent 
mixing length lm. In turbomachinery applications, lm is usually set to a 
value between 1% and 10% of a characteristic length scale. In this work 
a value of lm/c=0.05 for the mixing length at the inlet has been used 
which had been a good choice in previous computations (Gehrer and 
Jericha, 1999). 

Most k-ε models give overly high levels of turbulent energy in 
stagnation point regions. This is because the Boussinesq assumption 
fails in flows with large normal strain and this results in excessive 
production of turbulent energy in stagnation flows. These disturbances 
are convected downstream and can influence the entire boundary layer. 
One way to overcome these problems is using a modified production 
term. The modification used was suggested by Kato and Launder (1993) 
for the simulation of vortex shedding behind square cylinders.  
 

Navier-Stokes Solver. The flow solver used in this work is based 
on the time-marching Euler code of Sanz et al. (1995) and described in 
detail by Gehrer (1999). Here only a brief outline of the main features of 
the Navier-Stokes code is given.  

The governing equations (Eq.1) are treated in conservative vector-
form. The right hand side vector RHS is constructed from the numerical 
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approximation for the source term H, present only in the turbulence 
models, and the representative Fluxes at the bounding sides of the cell 
are given by E+1/2, R+1/2, which approximate the real Fluxes ∫EdS, ∫RdS 
to the required order of accuracy. 
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Implicit Time-Integration. Eq.2 is discretized in time by applying an 
implicit method leading to a set of non-linear finite difference equations: 
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To obtain time-accurate solutions at each time level, inner 
iterations, so called Newton iterations, are introduced. Solving Eq.3, 
using a Newton procedure, can be described by: 
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where p denotes a subiteration index and λ is a time-integration 
parameter which enables a blending between the first-order accurate, 
fully-implicit Euler backward scheme (λ=1) and the second-order 
accurate time-centred implicit trapezoidal method (λ=0.5). 

In stationary simulations convergence is optimised by using a local 
time step based on a local stability criterion and in addition, by applying 
a multigrid procedure based on Jameson and Yoon (1986) and Siikonen 
(1991). 
 

Inviscid Fluxes. The convective (Euler) parts $E , $ESA , $Ekε  are 
discretized using a third-order-accurate, TVD-upwind, cell-centred finite 
volume scheme, based on Roe's approximate Riemann solver (Roe, 
1981, Sanz et al., 1995). For the time linearization of the convective flux 
vector only a first order accurate upwind-scheme is considered. 
 

Viscous Fluxes. In order to construct the numerical viscous flux 
vector at the cell interfaces $R , $R SA , $R kε , it is necessary to evaluate 
first-order derivatives of the velocity components, the speed of sound 
and the turbulent quantities, which is done in a central-differencing 
manner, using Green's theorem (e.g., Furukawa et al. 1991). The time 
linearization of the viscous flux vector is performed by applying the 
thin-layer approximation for the implicit side of the equations. 
 

Source Terms. The source terms $HSA , $Hkε  are evaluated as cell 
averages. To estimate the gradients present in the source terms, a cell-
centred finite volume scheme is used. This gives a second-order accurate 
estimation of the gradients. For the implicit side of the equations, a true 
linearization of the source terms is performed. 

 

Boundary Conditions. In the present cell-centred scheme, phantom 
cells are used to handle all boundaries. According to the theory of 
characteristics, flow angle, total pressure, total temperature and 
isentropic relations are used at the subsonic axial inlet, whereas all 
variables are prescribed at the supersonic inlet. At the subsonic axial 
outlet the average value of the static pressure is prescribed, density and 
velocity components are extrapolated, whereas all variables are 
extrapolated at supersonic axial outlet. On solid walls, the pressure is 
extrapolated from the interior points and the non-slip adiabatic or 
isothermal condition is used to compute density and total energy. 
 

Computational Grids. The computational grid is generated with an 
algebraic multi-block grid generator based on Bézier curves and Bézier 
surfaces (Gehrer et al., 1996) and consists of three different blocks to 
avoid strongly skewed cells. A periodic O-type grid is wrapped around 
the blade to provide a good resolution of the leading and trailing edge 
flow, whereas inflow and outflow region are modeled by H-grids (see 
Fig.3). The total number of cells is 18688 and the grid is exponentially 
stretched normal to the blade surface such that the size of the first cell at 
the blade surface is below a y+-value of about 0.6, which was the 
maximum steady value at all locations. 
 

 
Fig. 3: Computational grid for linear turbine cascade 

 

Results and discussion 
 

Because the experiments showed a two-dimensional flow at 
midspan of the linear turbine cascade, two-dimensional steady and 
unsteady flow computations are performed using two different 
turbulence models. Special care is given to the analysis of the flow 
downstream of the trailing edge and in the wake.  

 
Steady State Calculations. In all steady state simulations presented 

herein, λ was set to 1 and convergence was optimised by using local 
time-stepping and three multigrid levels. The results of the steady 
computations are very similar to those presented in detail by Sanz et. al 
(1998) for an isentropic exit Mach number of M2,is=0.624 obtained with 
the same Navier-Stokes code on different computational grids. For 
further details regarding the steady state results and the respective 
comparisons with experimental, data the reader is therefore referred to 
this reference. 

 
Unsteady Computations. In all unsteady computations, the 

trapezoidal method (λ=0.5) has been used and time-accuracy has been 
ensured by performing a series of computations with different numbers 
of inner iterations. Concerning the trailing edge vortex shedding our 
numerical experiments can be summarised as follows:  

Up to a non-dimensional timestep of approximately 
Δt* = ( / )Δt a c⋅ 0 =0.0006, which corresponds to a maximum local 
CFL-number of about CFL=20, only one inner iteration has found to be 
sufficient to achieve time-accurate solutions. This means, that increasing 
the number of inner iterations does not significantly change the result. In 
this respect, both turbulence models showed very similar behaviour. 
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It should also be noted that when choosing larger timesteps, one has 
to appropriately increase the number of inner iterations (e.g. Furukawa 
et al., 1992), what has turned out to be less efficient (in terms of 
computational time) in this case. 
 

Convergence and Time Accuracy. The time history of the blade 
forces have been  nondimensionalized with the isentropic exit velocity 
w2,is, the isentropic exit density ρ2,is and the chord-length c. The 
computations were initialised with an initial guess (e.g. a laminar 
solution) and started with one inner iteration and a maximum local CFL-
number of 20. After several vortex-shedding cycles a fully developed 
periodic solution can be observed. Finally, the number of inner iterations 
is increased to e.g. five in order to increase the time accuracy at each 
time level and again some periods of the vortex-shedding cycle are 
computed.  

When regarding Fig.4, it is obvious that there are no significant 
differences in the results between one and five inner iterations, 
indicating, that one inner iteration is sufficient for this size of the 
timestep used.  
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Fig. 4: Time history of the nondimensional blade forces,  

∫τ⋅ds/(cρw2,is
2/2), ∫p⋅nds/(cρw2,is

2/2), computed with different 
numbers of inner iterations and compared with the result of 

the steady calculation (k-ε-model) 
 

Comparing the time history of the x- and y-components of the 
nondimensional friction force ∫τ⋅ds/(cρw2,is

2/2) and the respective 
components of the force due to the blade pressure ∫p⋅nds/(cρw2,is

2/2), 
(Fig.4) with the results of the steady state computation, it is interesting 
to note that only for the axial components the time average of the 
unsteady computation is in good agreement with the steady result. On 
the other hand, the y-components predicted by the unsteady 
computations indicate a higher mean value for the friction force and a 
lower averaged value for the integral blade pressure coefficient than 
those predicted by the steady calculations. This means that the effect of 
unsteadiness causes higher losses, as indicated by the increase in friction 
and affects the turning of the flow as indicated by the decrease in the y-
component of the pressure force. It should further be noted that in this 
respect the one-equation model of Spalart and Allmaras (1994) showed 
qualitatively very similar behaviour but it predicted higher values for the 
friction coefficients. This can be explained due to the fact that the one-

equation model gives a fully turbulent boundary layer, as shown by the 
skin-friction distribution in Fig.6, whereas the Biswas and Fukuyama 
(1994) model predicts transition automatically (e.g. Gehrer and Jericha, 
1999) at about 70% cord at the blade suction side. However, the pressure 
coefficients turned out to be largely similar to those calculated by the 
two-equation model. 
 

Strouhal Numbers. Since the time varying characteristics of the 
blade wake flow are strongly influenced by the boundary layer state at 
the trailing edge (Sieverding and Heinemann, 1990), a series of 
computations with both turbulence models have been carried out 
investigating different Mach numbers and different free stream 
turbulence levels. The results are summarised in table 2 and indicate 
very clearly that all computations predicted almost identical Strouhal 
numbers in the range of Str=f⋅dTE/w2,is=0.20 - 0.21, which is based on 
the trailing edge thickness dTE and the isentropic exit velocity w2,is. 

Regarding the flow conditions summarised in table 1, e.g. the Kato-
Launder modification of the two-equation low-Re k-ε model gives a 
period of the vortex shedding cycle corresponding to a frequency of 
16.25 kHz which is related to a Strouhal number of Str=0.203. 

Furukawa et. al. (1992) computed a similar Strouhal number for the 
same blade geometry using a 2D-Navier Stokes Code with an implicit 
upwind relaxation scheme and an algebraic Turbulence model.  

 

Table 2: Strouhal Numbers 
 

  Isentropic Free Stream  
   Exit Mach Turbulence Strouhal 
    Number  Level   Number 
Spalart  0.62  0%  0.201 
& Allmaras  0.7  0%  0.211 
Biswas  0.7  5%  0.203 
& Fukuyama 0.7  10%  0.200 
Experiment 0.62  5%  0.256 
  0.7  5%  0.225 
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Fig. 5: Computed Strouhal numbers and experimental data 

obtained from direct detection of density changes in the 
trailing edge region in comparison with other experimental 

data taken from Sieverding and Heinemann (1990) 
 

One the other hand, Siverding and Heinemann (1990) presented 
experimental Strouhal numbers for the same cascade geometry and with 
different trailing edge geometries (squared and circular) in the range of 
Str=0.24-0.36, strongly depending on the boundary layer state at the 
trailing edge. A comparison of the experimental and numerical data 
obtained from direct detection of density changes in the trailing edge 
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region with the measured data of Sieverding and Heinemann (1990) is 
displayed in Fig.5, showing reasonable agreement between all 
experimental data whereas the computed Strouhal numbers are too 
small. In contrast to this, other experimental data obtained with different 
blade geometries presented by Cicatelli and Sieverding (1995) and also 
by Siverding and Heinemann (1990) resulted in an almost constant 
Strouhal number of Str=0.2 for high Reynolds number flows. These 
discrepancies between experiment and computation are not fully 
understood, but they could possibly be related to secondary-flow effects 
as well as to a laminar/transitional wake flow or non isotropic 
turbulence, being not properly captured by the turbulence models. 

 

Blade Surface Pressure Distribution. Fig.6 shows the blade surface 
pressure distribution, made dimensionless with the inlet stagnation 
pressure p0. The numerical results are compared with the measured 
surface pressure data. In general, the measured data agree well with 
both, the steady state numerical results and the time average of the 
unsteady computations.  
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Fig. 6: Skin friction and blade surface pressure distribution  
 

However, small differences are observed between the two 
turbulence models which are due to the absence of free stream 
turbulence when using the Spalart and Allmaras (1994) model and due 
to the fact that the one-equation model does not solve for transition. 
Moreover, the time average of the unsteady computations is in excellent 

agreement with the steady state results along pressure- and suction side 
of the blade but in contrast to this, rather large differences are observed 
in the trailing edge region. 

In Fig.7 the unsteady pressure distribution on the blade surface 
illustrates the pressure waves being generated by the trailing edge vortex 
shedding. Although there is very good agreement between the mean 
pressure of the unsteady computations and the steady result (Fig.6), from 
Fig.7 it is clear that the unsteadiness of the vortex shedding greatly 
affects the blade pressure upstream the trailing edge to about 2/3 of the 
suction side and 1/2 of the pressure side. 

 

           

 p / p0 : 0.445 1.0

LE      suction side              TE    pressure side   LE
chordlength

time

t/T = 1

t/T = 2

 

Fig. 7: Computed pressure distribution on the blade surface 
obtained with the Low-Re k-ε model of Biswas and 

Fukuyama, 1994  
 

The Mean Flow. Regarding the time-averaged flow field of the 
unsteady computations compared with the results of the respective 
steady state simulations in Fig.8, rather significant differences can be 
observed, especially in the flow downstream of the trailing edge.  

Both turbulence models show similar behavior in the wake, but 
some differences occur in the main flow, mainly caused by the absence 
of free stream turbulence in the Spalart and Allmaras (1994) model. The 
unsteadily computed wake definitely widens more and the mean exit 
flow angle (with respect to the circumferential direction) is slightly 
increased by approximately 1°. 

Fig.9 shows the velocity distributions nondimensionalized via the 
stagnation speed of sound a0 in three axial planes downstream of the 
trailing edge. Some measurement data are missing in the first plane, 
since one of the laser beams was blocked by the blade.  

In the first plane which is located in the trailing edge region of the 
wake, the dip in the tangential velocity distribution is very large, the 
gradient is very high due to the transition of the flow from the blade 
boundary layer to the wake. The width of the wake and the velocity in 
the free-stream are predicted well by all calculations. The steady state 
calculations show a much larger velocity defect than the unsteady results 
which predict the minimum of the velocity somewhat shifted to the 
suction side. However, in the trailing edge region the unsteady 
computations are much closer to the experimental data than the steady 
calculations. 
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Fig. 8: Computed Mach number contours, increment 0.02 
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Fig. 9: Mean Velocity distribution in the wake flow field 

 

Further downstream, in the near wake region (plane 2), the velocity 
defect decays and the wake spreads due to mixing and exchange of 
momentum and energy with the free-stream flow. All numerical results 
predict this trend, but whereas the steady state results show a much 
narrower wake than the measurements, the width and the location of the 
wake centre predicted by the unsteady simulations are in better 
agreement with the experiment. However, all numerical simulations give 
overly high values for the velocity defect, very similar to the results of 
Sanz et. al. (1998).  
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Fig. 10: Mean velocity fluctuations in the wake flow field 
 

The measured wake widens more and the velocity defect in the 
third plane, at a streamwise distance of about 75% of the axial chord 
length, almost vanishes, whereas all calculations still predict a 
remarkable wake defect. Compared with the steady-state computations, 
the unsteady simulations show a much higher spreading of the wake, a 



 8

larger velocity defect (as opposed to plane 1) and a shifted location of 
the minimum velocity towards the circumferential direction.  

In general, the differences between the two turbulence models are 
small compared to the differences between numerical and experimental 
data and also compared to the differences between steady and unsteady 
computations. 

 

The Periodic Flow. According to the triple decomposition scheme 
proposed by Reynolds and Hussain (1972) for the study of coherent 
structures in shear flows, a generic velocity component v in a generic 
position can be represented as the sum of the time averaged contribution 
vav , the fluctuating component due to the periodic motion (vper-vav) and 
the random fluctuation v´ (e.g. Zunino et al., 1997): v=vav+(vper-vav)+v´ 

Regarding the unsteady computations, the random fluctuation v´ can 
be estimated from the turbulent kinetic energy and by assuming isotropic 
turbulence v´=(k⋅2/3)1/2. Since the flow solver calculates the Favre-
averaged velocity components, the periodic solution can directly be 
interpreted as velocity components due the periodic motion vper and the 
time averaged contribution is given by: vav=∫v⋅dt/T.  

A measure for the velocity fluctuation due to the periodic motion is 
then evaluated by calculating the root mean square (RMS) value of the 
periodic flow, given by vper,RMS=(∫(v-vav)2dt/T)1/2 and the mean random 
fluctuation is estimated from the time average of the turbulent kinetic 
energy: v'RMS =(2/3∫k⋅dt/T) 1/2. 

To explain the differences between measured and calculated wake 
characteristics, RMS-values of computed periodic and random 
fluctuations are compared with experimental data in Fig.10. Since the 
one equation model of Spalart and Allmaras (1994) does not explicitly 
predict the turbulent kinetic energy the random fluctuations were 
evaluated for the Biswas and Fukuyama (1994) model only.  

Regarding the experimental LDV-data, the total RMS values 
containing both, the random and periodic velocity fluctuations are 
evaluated for all planes. For some positions within the wake in plane 2 
and 3, it was possible to separate the contributions of periodic RMS and 
turbulent RMS by fitting two gauss fits into the velocity histograms as 
described previously. 

In general, the time average of the unsteady computation with the 
Spalart and Allmaras model predicts higher periodic fluctuations, and a 
higher spreading than the Biswas & Fukuyama model. Regarding the 
turbulent fluctuations, the steady calculation with the two equation 
model gives significantly higher contributions than the random RMS 
value of the unsteady simulations in the wake center, but good 
agreement is found in the main flow outside the wake. Moreover, it 
predicts a much narrower wake as already indicated by the time 
averaged flow field in Fig.9. In the main flow, the values of the 
predicted periodic fluctuations become rather small and the predicted 
turbulent fluctuations agree well with the experimental data. 

In particular, in the trailing edge region (plane 1) the numerically 
predicted periodic fluctuations seem to match qualitatively well with the 
experimental data, even if the magnitude of the predicted fluctuations is 
too high. In this respect, the k-ε-model performs better than the one-
equation model. In the near wake region (plane 2) and in plane 3 it is 
surprising that, as opposed to the results obtained for the mean flow (s. 
Fig.9), both the periodic and random RMS-values predicted by the 
unsteady simulations especially with the two equation model agree 
rather good with the experimental data.  

It is also interesting to note that both the experiments and the 
unsteady computations indicate very clearly that within the wake the 
fluctuation due to the periodic motion is much higher than the turbulent 
contribution. 

 

Identification of Organised Structures in the Trailing Edge Region. 
The identification of organised structures in the trailing edge region and 
the analysis of their evolution in time can be carried out with the aid of 
instantaneous entropy distributions and stream traces of the periodic 
flow velocity vper-vav (Zunino et. al (1997)) at several phases of a vortex 
shedding cycle. In Fig.11 and Fig.12 the respective flow quantities, 
obtained with the Low-Re k-ε model are displayed.  

 

     
 

    
 

0.994  1.212  
s = (p/p0)/(ρ/ρ0)κ 

Fig. 11: Unsteady Computation, Low Re-number k-ε model: 
Instantaneous entropy distributions 

 
 

    
  

    
 

Fig. 12: Unsteady Computation, Low Re-number k-ε model: 
Instantaneous streamline patterns of the periodic flow 

 

Starting from t/T=0, a counter clockwise vortex centred at about 
d/dTE=0.64 can easily be identified in the entropy distribution  and in the 
streamline pattern (s. pos. "1" in Fig.11 and Fig.12). From t/T=0 to 
t/T=0.25 this counter clockwise rotating vortex is in the shedding phase 
where flow from the pressure side feeds the vortex. At the same time, 
cross-stream periodic flow moves from the suction towards the pressure 
side and at t/T=0.125 starts rolling up in a clockwise loop of positive 
vorticity which progressively extends in the downstream direction (s. 
pos. "2" in Fig.11 and Fig.12). From t/T=0.125 to t/T=0.375 flow from 
the suction side enters this new clockwise vortex and at t/T=0.25 the 
flow of a small separated bubble near the suction sided trailing edge 
point (s. pos. "3" in Fig.12) starts to move towards the suction side 
forming the suction-sided branch of the clockwise vortex. During the 
next phases, from t/T=0.5 to t/T=0.625 a small separation bubble at the 
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pressure-sided trailing edge point (labelled as pos. "4" in Fig.12) gives 
rise to the new counter clockwise vortex which develops during the last 
phases of the period, fed by the pressure side periodic flow and will be 
shed at the beginning of the following cycle.  
 
Conclusions 
 

The evolution of the unsteady trailing edge vortex shedding 
downstream of a linear turbine cascade has experimentally and 
computationally been investigated by means of 2D-unsteady and steady 
state Navier-Stokes computations with Spalart and Allmaras (1994) and 
Biswas and Fukuyama (1994) turbulence closures. Furthermore, LDV-
measurements have been done in several axial planes downstream of the 
blade trailing edge and a laser vibrometer aligned to the LDV 
measurement volume was used to provide the frequency of the periodic 
density fluctuations in the wake.  

Monitoring the time history of the computed blade friction-force 
and the force due to the blade pressure and comparing the time average 
of the unsteady computation with the respective steady state results, it 
has been found that the effect of unsteadiness causes higher losses, as 
indicated by an increase in friction and also affects the turning of the 
flow resulting in an increase of the exit flow angle by approximately 1°. 

A series of unsteady computations varying exit Mach number and 
free stream turbulence intensities with both turbulence models indicated 
that the numerically predicted Strouhal numbers turned out to be in the 
range of Str=0.2-0.21 whereas the vibrometer detected density changes 
corresponding to Strouhal numbers in the range of Str=0.224÷0.355 
which is in reasonably good agreement with other experimental data.  

The comparison of the predicted time-averaged velocity 
distributions in the wake flow field with the LDV-data generally 
showed, that the unsteady computations predicted the location of the 
wake centre and the spreading of the wake much more accurately than 
the steady calculations. Especially in the trailing edge region good 
agreement has been found between the unsteady simulations and the 
measurements but all simulations predicted an overly high velocity 
defect further downstream in the near wake region and in the exit plane. 

Regarding the RMS values of the velocity fluctuations the unsteady 
computation with the Spalart and Allmaras (1994) model predicts higher 
periodic fluctuations, and a higher spreading than the Biswas and 
Fukuyama (1994) model. Both, the periodic and random fluctuations 
predicted by the two equation model showed rather good agreement with 
the measured fluctuations, especially in the near wake region and in the 
exit plane. 
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